石油学报 ›› 2023, Vol. 44 ›› Issue (6): 902-916,947.DOI: 10.7623/syxb202306002
张来斌1,2, 汪征1,2, 蔡永军3, 王金江1,2
收稿日期:
2022-12-04
修回日期:
2023-03-24
出版日期:
2023-06-25
发布日期:
2023-07-03
通讯作者:
张来斌,男,1961年9月生,1991年获石油大学(北京)博士学位,现为中国工程院院士、中国石油大学(北京)教授,长期从事油气生产系统及装备安全科学与工程理论、方法及技术的研究工作。
作者简介:
张来斌,男,1961年9月生,1991年获石油大学(北京)博士学位,现为中国工程院院士、中国石油大学(北京)教授,长期从事油气生产系统及装备安全科学与工程理论、方法及技术的研究工作。Email:zhanglb@cup.edu.cn
基金资助:
Zhang Laibin1,2, Wang Zheng1,2, Cai Yongjun3, Wang Jinjiang1,2
Received:
2022-12-04
Revised:
2023-03-24
Online:
2023-06-25
Published:
2023-07-03
摘要: 随着信息化和工业化的深度融合,传统油气储运逐步迈向网络化、数字化、智能化的信息物理系统。计算、通信及控制技术为油气储运行业赋能的同时带来了信息安全问题,并且发展成复杂的信息物理综合安全风险,导致叠加风险机理不清、态势感知评估困难等问题,亟需从传统以工程故障为主的物理安全分析向信息物理融合的综合风险分析转变。为此,分析了油气储运信息物理系统安全现状、内涵等相关背景,构建了围绕功能安全与信息安全一体化要素异构融合的油气储运信息物理系统安全理论技术框架,探索了信息物理系统风险形成及演化机理和风险特点,聚焦融合建模、态势感知、协同评估、异常预警、安全防护等关键技术的研究与应用,展望了信息物理系统安全的发展趋势,为推动信息物理融合安全研究提供参考。
中图分类号:
张来斌, 汪征, 蔡永军, 王金江. 油气储运信息物理系统安全:内涵及关键技术[J]. 石油学报, 2023, 44(6): 902-916,947.
Zhang Laibin, Wang Zheng, Cai Yongjun, Wang Jinjiang. Cyber-physical system safety for oil and gas storage and transportation: connotations and key technologies[J]. Acta Petrolei Sinica, 2023, 44(6): 902-916,947.
[1] WANG Dong, WANG Zidong, SHEN Bo, et al. Recent advances on filtering and control for cyber-physical systems under security and resource constraints[J].Journal of the Franklin Institute, 2016, 353(11):2451-2466. [2] SÁNCHEZ H S, ROTONDO D, ESCOBET T, et al.Bibliographical review on cyber attacks from a control oriented perspective[J].Annual Reviews in Control, 2019, 48:103-128. [3] TSVETANOV T, SLARIA S.The effect of the Colonial Pipeline shutdown on gasoline prices[J].Economics Letters, 2021, 209:110122. [4] 陈浩, 沈博臣, 钱泓超.油气管道运输中的工艺设备与自动化控制[J].制造业自动化, 2021, 43(08):69-73. CHEN Hao, SHEN Bochen, QIAN Hongchao.Process equipment and automatic control in oil and gas pipeline transportation[J].Manufacturing Automation, 2021, 43(08):69-73. [5] 张小虎, 蒋丽琼.长输天然气管道站控系统工控安全方案设计与研究[J].信息安全研究, 2019, 5(8):740-745. ZHANG Xiaohu, JIANG Liqiong.Research on security protection for station control system of long-distance natural gas transmission pipeline[J].Journal of Information Security Research, 2019, 5(8):740-745. [6] 王保庆.油气管道工控系统网络安全问题探讨[J].中国石油和化工标准与质量, 2020, 40(8):82-84. WANG Baoqing.Discussion on network security issues of oil and gas pipeline industrial control system[J].China Petroleum and Chemical Standard and Quality, 2020, 40(8):82-84. [7] 程小曼, 黄茜, 赵萍萍, 等.油气SCADA系统安全主动防御体系构建及应用[J].网络安全和信息化, 2022(1):139-142. CHENG Xiaoman, HUANG Qian, ZHAO Pingping, et al.Construction and application of active defense system for oil and gas SCADA system security[J].Cybersecurity & Informatization, 2022(1):139-142. [8] 郭建军.长输天然气管道SCADA系统信息安全现状分析及优化措施[J].电子世界, 2020(20):74-75. GUO Jianjun.Analysis of information security status and optimization measures of SCADA system for long-distance natural gas pipelines[J].Electronics World, 2020(20):74-75. [9] 刘锐, 薛金良, 张志群, 等.油气管道SCADA系统工控安全策略研究与实现[J].自动化应用, 2021(9):168-172. LIU Rui, XUE Jinliang, ZHANG Zhiqun, et al.Research and implementation of industrial control security strategy for oil and gas pipeline SCADA system[J].Automation Application, 2021(9):168-172. [10] 刘锐, 薛金良, 包贤晨, 等.油气管道SCADA系统工控安全分析[J].信息技术与网络安全, 2021, 40(11):1-7. LIU Rui, XUE Jinliang, BAO Xianchen, et al.Industrial control security analysis of SCADA system for oil and gas pipeline[J].Information Technology and Network Security, 2021, 40(11):1-7. [11] 张宏, 吴锴, 冯庆善, 等.高钢级管道环焊缝断裂韧性与裂尖拘束关系[J].石油学报, 2023, 44(2):385-393. ZHANG Hong, WU Kai, FENG Qingshan, et al.Relationship between fracture toughness and crack tip constraint of high-strength pipe girth welds[J].Acta Petrolei Sinica, 2023, 44(2):385-393. [12] 杨永, 罗艳龙, 孙明, 等.油气管道交流杂散电流腐蚀研究进展[J].石油学报, 2021, 42(9):1247-1254. YANG Yong, LUO Yanlong, SUN Ming, et al.Research advances in stray alternating current corrosion of oil and gas pipelines[J].Acta Petrolei Sinica, 2021, 42(9):1247-1254. [13] 马大中, 胡旭光, 孙秋野.基于大维数据驱动的油气管网泄漏监控模糊决策方法[J].自动化学报, 2017, 43(8):1370-1382. MA Dazhong, HU Xuguang, SUN Qiuye.A large dimensional data-driven fuzzy detection method for oil-gas pipeline network leakage[J].Acta Automatica Sinica, 2017, 43(8):1370-1382. [14] 何利民, 梁隆杰, 黄天山.石油储运设施衍生的多场景灾害评价技术[J].油气储运, 2021, 40(9):1063-1071. HE Limin, LIANG Longjie, HUANG Tianshan.Assessment technology of multi-scenario disasters derived from oil storage and transportation facilities[J].Oil & Gas Storage and Transportation, 2021, 40(9):1063-1071. [15] 王金江, 张来斌, 蔡永军.油气站场风险评价[M].北京:石油工业出版社, 2020. WANG Jinjiang, ZHANG Laibin, CAI Yongjun.Risk assessment of oil and gas stations[M].Beijing:Petroleum Industry Press, 2020. [16] 王新, 刘建平, 张强, 等.油气管道定量风险评价技术发展现状及对策[J].油气储运, 2020, 39(11):1238-1243. WANG Xin, LIU Jianping, ZHANG Qiang, et al.Development status and countermeasures of quantitative risk assessment technology for oil & gas pipeline[J].Oil & Gas Storage and Transportation, 2020, 39(11):1238-1243. [17] 王金江, 王舒辉, 张来斌, 等.基于数字孪生的压气站场设备风险智能决策系统[J].天然气工业, 2021, 41(7):115-123. WANG Jinjiang, WANG Shuhui, ZHANG Laibin, et al.Digital twin based intelligent risk decision-making system of compressor station equipment[J].Natural Gas Industry, 2021, 41(7):115-123. [18] 黄维和.大型天然气管网系统可靠性[J].石油学报, 2013, 34(2):401-404. HUANG Weihe.Reliability of large-scale natural gas pipeline network[J].Acta Petrolei Sinica, 2013, 34(2):401-404. [19] 肖峻, 宋晨辉, 鲍震宇, 等.天然气管网系统的稳态安全域模型[J].石油学报, 2021, 42(8):1103-1112. XIAO Jun, SONG Chenhui, BAO Zhenyu, et al.Steady-state security region model of the natural gas transmission system[J].Acta Petrolei Sinica, 2021, 42(8):1103-1112. [20] 张劲军, 苏怀, 高鹏.天然气管网韧性保供问题及其研究展望[J].石油学报, 2020, 41(12):1665-1678. ZHANG Jinjun, SU Huai, GAO Peng.Resilience-based supply assurance of natural gas pipeline networks and its research prospects[J].Acta Petrolei Sinica, 2020, 41(12):1665-1678. [21] AGARWAL N, BREM A.Strategic business transformation through technology convergence:implications from General Electric's industrial internet initiative[J].International Journal of Technology Management, 2015, 67(2/4):196-214. [22] LARA P, SÁNCHEZ M, VILLALOBOS J.Enterprise modeling and Operational Technologies (OT)application in the oil and gas industry[J].Journal of Industrial Information Integration, 2020, 19:100160. [23] 杨喜良, 张栋, 蔡永军.油气管道关键设备国产化探索与实践[J].油气储运, 2021, 40(1):7-14. YANG Xiliang, ZHANG Dong, CAI Yongjun.Exploration and practice of key equipment localization in oil and gas pipelines[J].Oil & Gas Storage and Transportation, 2021, 40(1):7-14. [24] 李柏松, 徐波, 王巨洪, 等.中俄东线北段关键设备与核心控制系统国产化[J].油气储运, 2020, 39(7):749-755. LI Baisong, XU Bo, WANG Juhong, et al.Localization of key equipment and core control system in north section of China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation, 2020, 39(7):749-755. [25] 杨剑锋, 杜金虎, 杨勇, 等.油气行业数字化转型研究与实践[J].石油学报, 2021, 42(2):248-258. YANG Jianfeng, DU Jinhu, YANG Yong, et al.Research and practice on digital transformation of the oil and gas industry[J].Acta Petrolei Sinica, 2021, 42(2):248-258. [26] 刘桂志.智能管道物联网网络层构建技术[J].油气储运, 2021, 40(5):515-520. LIU Guizhi.Construction technology of Internet of Things network layer for intelligent pipelines[J].Oil & Gas Storage and Transportation, 2021, 40(5):515-520. [27] 薛禹胜, 李满礼, 罗剑波, 等.基于关联特性矩阵的电网信息物理系统耦合建模方法[J].电力系统自动化, 2018, 42(2):11-19. XUE Yusheng, LI Manli, LUO Jianbo, et al.Modeling method for coupling relations in cyber physical power systems based on correlation characteristic matrix[J].Automation of Electric Power Systems, 2018, 42(2):11-19. [28] OVEISI S, RAVANMEHR R.SFTA-based approach for safety/reliability analysis of operational use-cases in cyber-physical systems[J].Journal of Computing and Information Science in Engineering, 2017, 17(3):031018. [29] ALI N, HUSSAIN M, HONG J E.Analyzing safety of collaborative cyber-physical systems considering variability[J].IEEE Access, 2020, 8:162701-162713. [30] SPAN M T, MAILLOUX L O, GRIMAILA M R, et al.A systems security approach for requirements analysis of complex cyber-physical systems[C]//International Conference on Cyber Security and Protection of Digital Services (Cyber Security).Glasgow:IEEE, 2018:1-8. [31] JI Zuzhen, YANG Shuanghua, CAO Yi, et al.Harmonizing safety and security risk analysis and prevention in cyber-physical systems[J].Process Safety and Environmental Protection, 2021, 148:1279-1291. [32] 王现中.油气储运智能化 研究进展[J].当代化工研究, 2020(18):7-8. WANG Xianzhong.Research progress of intelligent oil and gas storage and transportation[J].Modern Chemical Research, 2020(18):7-8. [33] Congressional Research Service.Pipeline cybersecurity:Federal Programs[R].Washington, D.C.:Library of Congress, 2019. [34] PIōTRE-CAMBACÉDōS L, CHAUDET C.The SEMA referential framework:avoiding ambiguities in the terms "security" and "safety"[J].International Journal of Critical Infrastructure Protection, 2010, 3(2):55-66. [35] XIONG Wenze, JIN Jianghong.Summary of integrated application of functional safety and information security in industry[C]//2018 12th International Conference on Reliability, Maintainability, and Safety (ICRMS).Shanghai, China:IEEE, 2018:463-469. [36] ŚLIWIŃSKI M, PIESIK E, PIESIK J.Integrated functional safety and cyber security analysis[J].IFAC-PapersOnLine, 2018, 51(24):1263-1270. [37] MODI C, PATEL D, BORISANIYA B, et al.A survey of intrusion detection techniques in Cloud[J].Journal of Network and Computer Applications, 2013, 36(1):42-57. [38] 靳江红, 莫昌瑜, 李刚.工业控制系统功能安全与信息安全一体化防护措施研究[J].工业安全与环保, 2020, 46(1):53-60. JIN Jianghong, MO Changyu, LI Gang.Integration technology of functional safety and cyber security for industrial control system[J].Industrial Safety and Environmental Protection, 2020, 46(1):53-60. [39] KRIAA S, PIETRE-CAMBACEDES L, BOUISSOU M, et al.A survey of approaches combining safety and security for industrial control systems[J].Reliability Engineering & System Safety, 2015, 139:156-178. [40] ZHONG R Y, XU Xun, KLOTZ E, et al.Intelligent manufacturing in the context of industry 4.0:a review[J].Engineering, 2017, 3(5):616-630. [41] 安成飞.等保2.0下工业控制系统安全防护[J].自动化博览, 2019, 36(S2):102-105. AN Chengfei.Security protection of industrial control system under classified protection of cybersecurity 2.0[J].Automation Panorama, 2019, 36(S2):102-105. [42] 宫敬, 徐波, 张微波.中俄东线智能化工艺运行基础与实现的思考[J].油气储运, 2020, 39(2):130-139. GONG Jing, XU Bo, ZHANG Weibo.Thinking on the basis and realization of intelligent process operation of China-Russia eastern gas pipeline[J].Oil & Gas Storage and Transportation, 2020, 39(2):130-139. [43] 王子宗, 高立兵, 索寒生.未来石化智能工厂顶层设计:现状、对比及展望[J].化工进展, 2022, 41(7):3387-3401. WANG Zizong, GAO Libing, SUO Hansheng.Designing petrochemical smart plant of the future:state of the art, comparison and prospects[J].Chemical Industry and Engineering Progress, 2022, 41(7):3387-3401. [44] 胡旭光.基于随机矩阵谱理论的成品油管道管网故障诊断方法研究[D].沈阳:东北大学, 2017. HU Xuguang.Research on products oil pipeline network fault diagnosis based on spectral theory of random matrix[D].Shenyang:Northeastern University, 2017. [45] 孟祥坤, 陈国明, 朱红卫.海底管道泄漏风险演化复杂网络分析[J].中国安全生产科学技术, 2017, 13(4):26-32. MENG Xiangkun, CHEN Guoming, ZHU Hongwei.Complex network analysis on risk evolution of submarine pipeline leakage[J].Journal of Safety Science and Technology, 2017, 13(4):26-32. [46] 卢绍文, 张超.某酸浸冶炼生产物理信息系统的复杂网络特征[J].复杂系统与复杂性科学, 2016, 13(3):81-85. LU Shaowen, ZHANG Chao.Complex topology features of the cyber physical system of an acid leaching industrial process[J].Complex Systems and Complexity Science, 2016, 13(3):81-85. [47] DING Kai, LEI Jingyuan, ZAHNG Fuqiang, et al.Analyzing the cyber-physical system-based autonomous collaborations among smart manufacturing resources in a smart shop floor[J].Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2020, 234(3):489-500. [48] WEI Yongsong, LI Shaoyuan.Water supply networks as cyber-physical systems and controllability analysis[J].IEEE/CAA Journal of Automatica Sinica, 2015, 2(3):313-319. [49] 陈世明, 邹小群, 吕辉, 等.面向级联失效的相依网络鲁棒性研究[J].物理学报, 2014, 63(2):028902. CHEN Shiming, ZOU Xiaoqun, LÜ Hui, et al.Research on robustness of interdependent network for suppressing cascading failure[J].Acta Physica Sinica, 2014, 63(2):028902. [50] HUANG Zhen, WANG Cheng, NAYAK A, et al.Small cluster in cyber physical systems:network topology, interdependence and cascading failures[J].IEEE Transactions on Parallel and Distributed Systems, 2015, 26(8):2340-2351. [51] 董政呈.相互依存网络的抗毁性研究及在电力系统的应用[D].武汉:武汉大学, 2016. DONG Zhengcheng.Research on the invulnerability of interdependent networks and its applications in power system[D].Wuhan:Wuhan University, 2016. [52] 蒋将.基于网络科学的复杂电力系统建模与分析[D].杭州:浙江大学, 2021. JIANG Jiang.Modeling and analysis of complex power system based on network science[D].Hangzhou:Zhejiang University, 2021. [53] XU Luo, GUO Qinglai, YANG Tianyu, et al.Robust routing optimization for smart grids considering cyber-physical interdependence[J].IEEE Transactions on Smart Grid, 2019, 10(5):5620-5629. [54] 冀星沛, 王波, 刘涤尘, 等.相依网络理论及其在电力信息-物理系统结构脆弱性分析中的应用综述[J].中国电机工程学报, 2016, 36(17):4521-4532. JI Xingpei, WANG Bo, LIU Dichen, et al.Review on interdependent networks theory and its applications in the structural vulnerability analysis of electrical cyber-physical system[J].Proceedings of the CSEE, 2016, 36(17):4521-4532. [55] GUO Jia, HAN Yuqi, GUO Chuangxin, et al.Modeling and vulnerability analysis of cyber-physical power systems considering network topology and power flow properties[J].Energies, 2017, 10(1):87. [56] ILIĆ M D, XIE Le, KHAN U A, et al.Modeling of future cyber-physical energy systems for distributed sensing and control[J].IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2010, 40(4):825-838. [57] NOURIAN A, MADNICK S.A systems theoretic approach to the security threats in cyber physical systems applied to stuxnet[J].IEEE Transactions on Dependable and Secure Computing, 2018, 15(1):2-13. [58] 曹科宁, 李仁发, 张小明, 等.面向CPS复杂事件流的不确定性研究[J].计算机工程与科学, 2015, 37(3):415-421. CAO Kening, LI Renfa, ZHANG Xiaoming, et al.Research on uncertain CEP for CPS[J].Computer Engineering & Science, 2015, 37(3):415-421. [59] 江奕勋, 张立臣.基于信息物理融合系统的时空建模方法[J].现代计算机, 2020(25):32-36. JIANG Yixun, ZHANG Lichen.Space-time modeling method based on information physics fusion system[J].Modern Computer, 2020(25):32-36. [60] 许亮, 刘兰英, 李秀喜.面向化工过程安全运行的信息物理融合系统[J].现代化工, 2016, 36(3):169-172. XU Liang, LIU Lanying, LI Xiuxi.Cyber-physical system for safe operation of chemical processes[J].Modern Chemical Industry, 2016, 36(3):169-172. [61] 王云.基于混合系统的主动配电网信息物理融合建模与控制[D].上海:上海交通大学, 2017. WANG Yun.Cyber physical system integration modeling and control for active distribution network based on hybrid system[D].Shanghai:Shanghai Jiao Tong University, 2017. [62] 王云, 刘东, 陆一鸣.电网信息物理系统的混合系统建模方法研究[J].中国电机工程学报, 2016, 36(6):1464-1470. WANG Yun, LIU Dong, LU Yiming.Research on hybrid system modeling method of cyber physical system for power grid[J].Proceedings of the CSEE, 2016, 36(6):1464-1470. [63] 王云, 刘东, 翁嘉明, 等.电网信息物理系统建模与仿真验证平台研究[J].中国电机工程学报, 2018, 38(1):130-136. WANG Yun, LIU Dong, WENG Jiaming, et al.The research of power CPS modeling and simulation verification platform[J].Proceedings of the CSEE, 2018, 38(1):130-136. [64] ZHU Yufeng, DONG Yunwei, MA Chunyan, et al.A methodology of model-based testing for AADL flow latency in CPS[C]//2011 5th International Conference on Secure Software Integration & Reliability Improvement Companion (SSIRI-C).Jeju, South Korea:IEEE, 2011:99-105. [65] S UN Zhonghao, ZHOU Xingshe.Extending and recompiling AADL for CPS modeling[C]//2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing.Beijing, China:IEEE, 2013:1225-1230. [66] ZHANG Lichen.Specifying and modeling automotive cyber physical systems[C]//2013 IEEE 16th International Conference on Computational Science and Engineering (CSE).Sydney, Australia:IEEE, 2013:603-610. [67] ZHANG Lichen.An integration approach to specify and model automotive cyber physical systems[C]//2013 International Conference on Connected Vehicles and Expo (ICCVE).Las Vegas, USA:IEEE, 2013:568-573. [68] GUAN Tao, YANG Gang.Integration-oriented modeling of cyber-physical interactive process[C]//2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing.Beijing, China:IEEE, 2013:1492-1495. [69] ZHANG Lichen.Multi-dimensional analysis and design method for aerospace cyber-physical systems[C]//2013 12th International Symposium on Distributed Computing and Applications to Business, Engineering & Science.Kingston upon Thames, UK:IEEE, 2013:197-201. [70] 赵福迪, 柳先辉.信息物理融合系统建模技术研究[J].信息技术, 2021, 45(9):1-6. ZHAO Fudi, LIU Xianhui.Research on modeling technology of cyber-physics fusion system[J].Information Technology, 2021, 45(9):1-6. [71] MANSOORI M, WELCH I, CHOO K K R, et al.Application of HAZOP to the design of cyber security experiments[C]//IEEE 30th International Conference on Advanced Information Networking & Applications.Crans-Montana, Switzerland:IEEE, 2016:790-799. [72] UMEDA H, NAMIHIRA K, OKUBO N, et al.FMEA focusing on the interaction between physical and computational elements in cyber-physical systems[C]//2021 Annual Reliability and Maintainability Symposium (RAMS).Orlando:IEEE, 2021:1-7. [73] TANTAWY A, ERRADI A, ABDELWAHED S.A modified layer of protection analysis for cyber-physical systems security[C]//2019 4th International Conference on System Reliability and Safety (ICSRS).Rome, Italy:IEEE, 2019:94-101. [74] CARRERAS GUZMAN N H, KOZINE I, LUNDTEIGEN M A.An integrated safety and security analysis for cyber-physical harm scenarios[J].Safety Science, 2021, 144:105458. [75] FRIEDBERG I, MCLAUGHLIN K, SMITH P, et al.STPA-SafeSec:safety and security analysis for cyber-physical systems[J].Journal of Information Security and Applications, 2017, 34:183-196. [76] TANTAWY A, ABDELWAHED S, ERRADI A, et al.Model-based risk assessment for cyber physical systems security[J].Computers & Security, 2020, 96:101864. [77] 韩宇奇, 郭创新, 朱炳铨, 等.基于改进渗流理论的信息物理融合电力系统连锁故障模型[J].电力系统自动化, 2016, 40(17):30-37. HAN Yuqi, GUO Chuangxin, ZHU Bingquan, et al.Model cascading failures in cyber physical power system based on improved percolation theory[J].Automation of Electric Power Systems, 2016, 40(17):30-37. [78] 邓勇, 彭敏放, 刘靖雯.电力信息物理系统建模和信息攻击机制分析[J].电力系统及其自动化学报, 2021, 33(10):10-17. DENG Yong, PENG Minfang, LIU Jingwen.Modeling of cyber power physical system and analysis of information attack mechanism[J].Proceedings of the CSU-EPSA, 2021, 33(10):10-17. [79] 翁嘉明, 刘东, 安宇, 等.馈线功率控制下的主动配电网信息物理风险演化分析[J].中国电力, 2021, 54(3):13-22. WENG Jiaming, LIU Dong, AN Yu, et al.Cyber-physical risk evolution analysis of active distribution network under feeder control error[J].Electric Power, 2021, 54(3):13-22. [80] KWON C, HWANG I.Reachability analysis for safety assurance of cyber-physical systems against cyber attacks[J].IEEE Transactions on Automatic Control, 2018, 63(7):2272-2279. [81] VERMA S, GRUBER T, SCHMITTNER C, et al.Combined approach for safety and security[C]//SAFECOMP 2019 Workshops on Computer Safety, Reliability, and Security.Turku, Finland:Springer, 2019:87-101, doi:10.1007/978-3-030-26250-1_7. [82] LIU Xiaoxue, ZHANG Jiexin, ZHU Peidong.Modeling cyber-physical attacks based on probabilistic colored Petri nets and mixed-strategy game theory[J].International Journal of Critical Infrastructure Protection, 2017, 16:13-25. [83] THRAMBOULIDIS K, CHRISTOULAKIS F.UML4IoT-A UML-based approach to exploit IoT in cyber-physical manufacturing systems[J].Computers in Industry, 2016, 82:259-272. [84] THRAMBOULIDIS K.A cyber-physical system-based approach for industrial automation systems[J].Computers in Industry, 2015, 72:92-102. [85] TORKILDSON E N, LI Jingyue, JOHNSEN S O, et al.Empirical studies of methods for safety and security co-analysis of autonomous boat[M]//HAUGEN S, BARROS A, GULIJK C, et al.Safety and Reliability-Safe Societies in A Changing World.London:CRC Press, 2018. [86] KORNECKI A J, SUBRAMANIAN N, ZALEWSKI J.Studying interrelationships of safety and security for software assurance in cyber-physical systems:approach based on Bayesian belief networks[C]//2013 Federated Conference on Computer Science and Information Systems.Krakow, Poland:IEEE, 2013:1393-1399. [87] 周明, 吕世超, 游建舟, 等.工业控制系统安全态势感知技术研究[J].信息安全学报, 2022, 7(2):101-119. ZHOU Ming, LÜ Shichao, YOU Jianzhou, et al.A comprehensive survey of security situational awareness on industrial control systems[J].Journal of Cyber Security, 2022, 7(2):101-119. [88] BASU C, PADMANABAN M, GUILLON S, et al.Situational awareness for the electrical power grid[J].IBM Journal of Research and Development, 2016, 60(1):10:1-10:11. [89] 张小俊, 史威, 贾立东, 等.工业网络安全态势感知平台在能源管道行业应用的机遇与挑战[J].自动化应用, 2021(8):80-82. ZHANG Xiaojun, SHI Wei, JIA Lidong, et al.Opportunities and challenges of industrial network security situational awareness platform application in energy pipeline industry[J].Automation Application, 2021(8):80-82. [90] WANG Yong, XU Zhaoyan, ZHANG Jialong, et al.SRID:state relation based intrusion detection for false data injection attacks in SCADA[C]//19th European Symposium on Research in Computer Security.Wroclaw, Poland:Springer, 2014:401-418. [91] CHIEN D.Systems and methods for suppressing denial of service attacks:US, 10277626B2[P].2019-04-30. [92] 陆耿虹, 冯冬芹.基于改进C-SVC的工控网络安全态势感知[J].控制与决策, 2017, 32(7):1223-1228. LU Genghong, FENG Dongqin.Industrial control network security situation awareness based on improved C-SVC[J].Control and Decision, 2017, 32(7):1223-1228. [93] 罗涛, 孙阔, 张章, 等.多能源数据驱动的电力信息物理系统综合态势感知模型[J].可再生能源, 2021, 39(3):395-400. LUO Tao, SUN Kuo, ZHANG Zhang, et al.Comprehensive situation awareness model of power cyber-physical system driven by multi-energy data[J].Renewable Energy Resources, 2021, 39(3):395-400. [94] IAIANI M, TUGNOLI A, MACINI P, et al.Outage and asset damage triggered by malicious manipulation of the control system in process plants[J].Reliability Engineering & System Safety, 2021, 213:107685. [95] 张世斌, 贾立东, 魏义昕, 等.输气管道SCADA系统网络安全策略探索与实现——以中俄东线天然气管道工程为例[J].油气储运, 2020, 39(6):685-691. ZHANG Shibin, JIA Lidong, WEI Yixin, et al.Exploration and implementation of network security strategy for gas pipeline SCADA system:taking the China-Russia Eastern Gas Pipeline Project as an example[J].Oil & Gas Storage and Transportation, 2020, 39(6):685-691. [96] NING Xirong, JIANG Jin.Design, analysis and implementation of a security assessment/enhancement platform for cyber-physical systems[J].IEEE Transactions on Industrial Informatics, 2022, 18(2):1154-1164. |
[1] | 姚安林, 田晓建, 徐涛龙, 高山, 蒋宏业, 李又绿. 管道爆炸对同沟邻管的冲击效应及防爆墙抗爆性能[J]. 石油学报, 2020, 41(6): 753-761. |
[2] | 柳军, 郭晓强, 刘清友, 王国荣, 何玉发, 李建. 考虑顺流向和横流向耦合作用的海洋立管涡激振动响应特性[J]. 石油学报, 2019, 40(10): 1270-1280. |
[3] | 梁博, 蒋宏业, 徐涛龙, 姚安林, 文霞. 基于SPH-FEM耦合算法的埋地输气管道近场爆炸冲击动力响应[J]. 石油学报, 2017, 38(11): 1326-1334. |
[4] | 杨锋平, 罗金恒, 李鹤, 郭亚洲, 冯健. X90超高强度输气钢管材料本构关系及断裂准则[J]. 石油学报, 2017, 38(1): 112-118. |
[5] | 姚安林, 黄亮亮, 徐涛龙. 基于GO法的输气站场可靠性分析[J]. 石油学报, 2016, 37(5): 688-694. |
[6] | 付建民, 赵振洋, 陈国明, 罗会玖, 张保坡, 张伯伦, 叶闯, 朱渊. 液相管道流量与压力对小孔泄漏速率的影响[J]. 石油学报, 2016, 37(2): 257-265. |
[7] | 刘康, 陈国明, 魏超南. 浮式生产系统泄漏天然气扩散规律与危险区域[J]. 石油学报, 2015, 36(8): 1018-1028. |
[8] | 朱兴吉, 程旭东, 彭文山, Goangseup Zi. 热应力作用下液化天然气储罐球形罐顶应力分布及裂缝形态[J]. 石油学报, 2014, 35(5): 993-1000. |
[9] | 魏超南, 陈国明, 刘康. 浮式生产系统泄漏天然气爆燃特性与安全区域[J]. 石油学报, 2014, 35(4): 786-794. |
[10] | 张圣柱, 吴宗之. 基于风险的长输油气管道选线优化方法[J]. 石油学报, 2014, 35(3): 570-576. |
[11] | 孙洁娣, 靳世久, 孙健. 基于多地震波传感器数据融合的管道安全监测预警系统[J]. 石油学报, 2009, 30(3): 465-468. |
[12] | 冯耀荣, 庄茁, 庄传晶, 由小川, 霍春勇. 裂纹尖端张开角及在输气管线止裂预测中的应用[J]. 石油学报, 2003, 24(4): 99-102,107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1