[1] 袁庆峰,朱丽莉,陆会民,等. 水驱油田晚期开发特征及提高采收率主攻方向[J].大庆石油地质与开发,2019,38(5):34-40. YUAN Qingfeng,ZHU Lili,LU Huimin,et al.Development characteristics and main tackled EOR research direction for the waterflooded oilfield at the late stage[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):34-40. [2] 闫伟超,孙建孟.微观剩余油研究现状分析[J].地球物理学进展,2016,31(5):2198-2211. YAN Weichao,SUN Jianmeng.Analysis of research present situation of microscopic remaining oil[J].Progress in Geophysics,2016,31(5):2198-2211. [3] 袁士义,王强.中国油田开发主体技术新进展与展望[J].石油勘探与开发,2018,45(4):657-668. YUAN Shiyi,WANG Qiang.New progress and prospect of oilfields development technologies in China[J].Petroleum Exploration and Development,2018,45(4):657-668. [4] 李宜强,何书梅,赵子豪,等.基于剩余油动用规律的高含水油藏水驱扩大波及体积方式实验[J].石油学报,2023,44(3):500-509. LI Yiqiang,HE Shumei,ZHAO Zihao,et al.Experiment on enlargement of swept volume by water flooding in high water cut reservoir based on the remaining oil displacement law[J].Acta Petrolei Sinica,2023,44(3):500-509. [5] 王文明,衣晓东,殷代印.应用激光共聚焦研究特低渗透储层微观剩余油分布——以榆树林油田扶杨油层为例[J].石油地质与工程,2021,35(2):50-55. WANG Wenming,YI Xiaodong,YIN Daiyin.Microscopic remaining oil distribution in ultra-low permeability reservoir by laser confocal method:by taking Fuyang reservoir of Yushulin oilfield as an example[J].Petroleum Geology and Engineering, 2021,35(2):50-55. [6] 张小静,段秋红,申乃敏,等.聚驱后油藏微观剩余油水驱启动方式及优化挖潜——以双河油田为例[J].石油地质与工程,2020,34(5):63-68. ZHANG Xiaojing,DUAN Qiuhong,SHEN Naimin,et al.Starting mode and tapping potential of micro remaining oil-water drive after polymer flooding:by taking Shuanghe oilfield as an example[J].Petroleum Geology and Engineering,2020,34(5):63-68. [7] GONZALEZ R C,WOODS R E,EDDINS S L.数字图像处理(MATLAB版)[M].2版.阮秋琦,译.北京:电子工业出版社,2013. GONZALEZ R C,WOODS R E,EDDINS S L.Digital image processing using MATLAB[M].2nd ed.RUAN Qiuqi,trans.Beijing:Publishing House of Electronics Industry,2013. [8] 张月.萨北油水过渡带储层孔隙结构及其微观剩余油特征[D].大庆:东北石油大学,2016. ZHANG Yue.Microscopic pore structure and microscopic remnant oil of reservoir in Sabei oil-water transition area[D].Daqing:Northeast Petroleum University,2016. [9] GENG Huiqiang,ZHANG Hua,XUE Yanbing,et al.Semantic image segmentation with fused CNN features[J].Optoelectronics Letters,2017,13(5):381-385. [10] 马文礼,李治平,卢婷,等.机器视觉在油气勘探开发中的应用现状[J].科学技术与工程,2018,18(17):112-119. MA Wenli,LI Zhiping,LU Ting,et al.Application of machine vision in oil & gas exploration and exploitation:a review[J].Science Technology and Engineering,2018,18(17):112-119. [11] 高文彬,李宜强,何书梅,等.基于荧光薄片的剩余油赋存形态分类方法[J].石油学报,2020,41(11):1406-1415. GAO Wenbin,LI Yiqiang,HE Shumei,et al.Classification method of occurrence mode of remaining oil based on fluorescence thin sections[J].Acta Petrolei Sinica,2020,41(11):1406-1415. [12] OGIESOBA O,AMBROSE W.Seismic attributes investigation of depositional environments and hydrocarbon sweet-spot distribution in Serbin Field,Taylor Group,Central Texas[C]//Proceedings of the SEG Technical Program Expanded Abstracts 2017.Houston:SEG,2017:2274-2278. [13] 林年添,张栋,张凯,等.地震油气储层的小样本卷积神经网络学习与预测[J].地球物理学报,2018,61(10):4110-4125. LIN Niantian,ZHANG Dong,ZHANG Kai,et al.Predicting distribution of hydrocarbon reservoirs with seismic data based on learning of the small-sample convolution neural network[J].Chinese Journal of Geophysics,2018,61(10):4110-4125. [14] ZHANG Tuanfeng,TILKE P,DUPONT E,et al.Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks[J].Petroleum Science,2019,16(3):541-549. [15] Lewis W,Vigh D .Deep learning prior models from seismic images for full-waveform inversion[C]//Proceedings of the SEG Technical Program Expanded Abstracts 2017.Houston:SEG,2017:1512-1517. [16] 龚斌,王虹雅,王红娜,等.基于大数据分析算法的深部煤层气地质—工程一体化智能决策技术[J].石油学报,2023,44(11):1949-1958. GONG Bin,WANG Hongya,WANG Hongna,et al.Integrated intelligent decision-making technology for deep coalbed methane geology and engineering based on big data analysis algorithms[J].Acta Petrolei Sinica,2023,44(11):1949-1958. [17] 孙歧峰,段友祥,柳璠,等.多阈值BIRCH聚类在相控孔隙度预测中的应用[J].石油地球物理勘探,2020,55(2):379-388. SUN Qifeng,DUAN Youxiang,LIU Fan,et al.Application of multi-threshold BIRCH clustering to facies-controlled porosity estimation[J]. Oil Geophysical Prospecting,2020,55(2):379-388. [18] 刘喜武,王心宇,刘宇巍,等.中国陆相页岩油地震勘探技术现状及发展方向[J].石油学报,2023,44(12):2270-2285. LIU Xiwu,WANG Xinyu,LIU Yuwei,et al.Current status and development direction of seismic prospecting technology for continental shale oil in China[J].Acta Petrolei Sinica,2023,44(12):2270-2285. [19] 安鹏,曹丹平.基于深度学习的测井岩性识别方法研究与应用[J].地球物理学进展,2018,33(3):1029-1034. AN Peng,CAO Danping.Research and application of logging lithology identification based on deep learning[J].Progress in Geophysics,2018,33(3):1029-1034. [20] 马陇飞,萧汉敏,陶敬伟,等.基于深度学习岩性分类的研究与应用[J].科学技术与工程,2022,22(7):2609-2617. MA Longfei,XIAO Hanmin,TAO Jingwei,et al.Research and application of lithology classification based on deep learning[J].Science Technology and Engineering,2022,22(7):2609-2617. [21] 陈云天.基于机器学习的测井曲线补全与生成研究[D].北京:北京大学,2019. CHEN Yuntian.Research on well log completion and generation based on machine learning[D].Beijing:Peking University,2019. [22] 潘少伟,王朝阳,张允,等.基于长短期记忆神经网络补全测井曲线和混合优化XGBoost的岩性识别[J].中国石油大学学报:自然科学版,2022,46(3):62-71. PAN Shaowei,WANG Zhaoyang,ZHANG Yun,et al.Lithology identification based on LSTM neural networks completing log and hybrid optimized XGBoost[J].Journal of China University of Petroleum:Edition of Natural Science,2022,46(3):62-71. [23] 孙金声,刘凡,程荣超,等.机器学习在防漏堵漏中研究进展与展望[J].石油学报,2022,43(1):91-100. SUN Jinsheng,LIU Fan,CHENG Rongchao,et al.Research progress and prospects of machine learning in lost circulation control[J].Acta Petrolei Sinica,2022,43(1):91-100. [24] 陈超,齐峰.卷积神经网络的发展及其在计算机视觉领域中的应用综述[J].计算机科学,2019,46(3):63-73. CHEN Chao,QI Feng.Review on development of convolutional neural network and its application in computer vision[J].Computer Science,2019,46(3):63-73. [25] HARIHARAN B,ARBELÁEZ P,GIRSHICK R,et al.Hypercolumns for object segmentation and fine-grained localization[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015. [26] 葛轶洲,刘恒,王言,等.小样本困境下的深度学习图像识别综述[J].软件学报,2022,33(1):193-210. GE Yizhou,LIU Heng,WANG Yan,et al.Survey on deep learning image recognition in dilemma of small samples[J].Journal of Software,2022,33(1):193-210. [27] SONG Lei,LIU Guixia,MA Mingrui.TD-Net:unsupervised medical image registration network based on Transformer and CNN[J].Applied Intelligence,2022,52(15):18201-18209. [28] 王津.荧光显微图像技术在油气勘探开发中的应用综述[J].石油化工应用,2016,35(9):1-4. WANG Jin.The application about fluorescent micro-image technology in the oil and gas exploration and development[J].Petrochemical Industry Application,2016,35(9):1-4. [29] FELZENSZWALB P F,HUTTENLOCHER D P.Efficient graph-based image segmentation[J].International Journal of Computer Vision, 2004,59(2):167-181. [30] HARIHARAN B,ARBELÁEZ P,GIRSHICK R,et al.Simultaneous detection and segmentation[C]//Proceedings of the 13th European Conference on Computer Vision.Zurich:Springer,2014. [31] CARREIRA J,CASEIRO R,BATISTA J,et al.Semantic segmentation with second-order pooling[C]//Proceedings of the 12th European Conference on Computer Vision.Florence:Springer,2012. [32] 杨振亚,王勇,杨振东,等.RGB颜色空间的矢量-角度距离色差公式[J].计算机工程与应用,2010,46(6):154-156. YANG Zhenya,WANG Yong,YANG Zhendong,et al.Vector-Angular distance color difference formula in RGB color space[J].Computer Engineering and Applications,2010,46(6):154-156. [33] 王攀杰,郭绍忠,侯明,等.激活函数的对比测试与分析[J].信息工程大学学报,2021,22(5):551-557. WANG Panjie,GUO Shaozhong,HOU Ming,et al.Comparative test and analysis of activation function library[J].Journal of Information Engineering University,2021,22(5):551-557. [34] 杜圣杰,贾晓芬,黄友锐,等.面向CNN模型图像分类任务的高效激活函数设计[J].红外与激光工程,2022,51(3):20210253. DU Shengjie,JIA Xiaofen,HUANG Yourui,et al.High efficient activation function design for CNN model image classification task[J].Infrared and Laser Engineering,2022,51(3):20210253. [35] 蒋昂波,王维维.ReLU激活函数优化研究[J].传感器与微系统,2018,37(2):50-52. JIANG Angbo,WANG Weiwei.Research on optimization of ReLU activation function[J].Transducer and Microsystem Technologies,2018,37(2):50-52. [36] SCHMIDT-HIEBER J.Nonparametric regression using deep neural networks with ReLU activation function[J].The Annals of Statistics,2020 ,48(4):1875-1897. [37] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015. [38] LI Junjian,JIANG Hanqiao,WANG Chuan,et al.Pore-scale investigation of microscopic remaining oil variation characteristics in water-wet sandstone using CT scanning[J].Journal of Natural Gas Science and Engineering,2017,48:36-45. [39] 程小龙,王正勇,滕奇志.基于KNN的剩余油形态识别[J].信息技术与网络安全,2020,39(1):104-107. CHENG Xiaolong,WANG Zhengyong,TENG Qizhi.K-nearest neighbor method for recognizing the shape of residual oil[J].Cyber Security and Data Governance,2020,39(1):104-107. [40] 朱光普,姚军,张磊,等.特高含水期剩余油分布及形成机理[J].科学通报,2017,62(22):2553-2563. ZHU Guangpu,YAO Jun,ZHANG Lei,et al.Pore-scale investigation of residual oil distributions and formation mechanisms at the extra-high water-cut stage[J].Chinese Science Bulletin,2017,62(22):2553-2563. |