石油学报 ›› 2024, Vol. 45 ›› Issue (4): 718-754.DOI: 10.7623/syxb202404009
朱光有, 艾依飞, 李婷婷, 王萌, 陈玮岩, 张志遥, 赵坤, 李茜, 张岩, 段鹏珍, 石军
收稿日期:
2023-05-07
修回日期:
2023-11-30
出版日期:
2024-04-25
发布日期:
2024-05-08
通讯作者:
朱光有,男,1973年9月生,2003年获石油大学(华东)博士学位,现为中国石油勘探开发研究院教授级高级工程师,主要从事深层油气地质与地球化学成藏研究工作。Email:zhuguangyou@petrochina.com.cn
作者简介:
朱光有,男,1973年9月生,2003年获石油大学(华东)博士学位,现为中国石油勘探开发研究院教授级高级工程师,主要从事深层油气地质与地球化学成藏研究工作。Email:zhuguangyou@petrochina.com.cn
基金资助:
Zhu Guangyou, Ai Yifei, Li Tingting, Wang Meng, Chen Weiyan, Zhang Zhiyao, Zhao Kun, Li Xi, Zhang Yan, Duan Pengzhen, Shi Jun
Received:
2023-05-07
Revised:
2023-11-30
Online:
2024-04-25
Published:
2024-05-08
摘要: 近年来,油气地球化学与成藏学科在新技术、新方法和新思路的引领下快速发展,在指导万米深层油气、非常规油气和复杂油气藏的勘探与开发方面发挥了重要作用。其中,金属同位素(非传统稳定同位素)、卤族同位素、高维度稳定同位素(团簇同位素、三氧同位素、多硫同位素及分子内同位素)等非常规同位素体系受到学界高度关注,并成为地球化学学科中发展最为迅猛的方向之一。传统同位素技术进一步升级换代,C、H、O、S、N同位素系列分析技术依然发挥着主要功能;卤族、Si等同位素分析技术正在快速兴起;成藏年代学分析步入油气藏精准定年新时代;新的有机化学分析手段使得新化合物的发现成为可能,而这些新化合物的发现为研究油气成因提供了新证据。随着油气勘探对象的复杂程度提高,对油气地球化学研究的需求将愈加强烈,新技术的研发和应用将是未来油气地球化学与成藏学科科研工作者的重要使命。
中图分类号:
朱光有, 艾依飞, 李婷婷, 王萌, 陈玮岩, 张志遥, 赵坤, 李茜, 张岩, 段鹏珍, 石军. 非常规同位素在石油地质学中的应用与油气地球化学新进展[J]. 石油学报, 2024, 45(4): 718-754.
Zhu Guangyou, Ai Yifei, Li Tingting, Wang Meng, Chen Weiyan, Zhang Zhiyao, Zhao Kun, Li Xi, Zhang Yan, Duan Pengzhen, Shi Jun. Application of unconventional isotopes in petroleum geology and new progress in petroleum geochemistry[J]. Acta Petrolei Sinica, 2024, 45(4): 718-754.
[1] 闫磊,朱光有,王珊,等.塔里木盆地震旦系--寒武系万米超深层天然气成藏条件与有利区带优选[J].石油学报,2021,42(11), 1446-1457. YAN Lei,ZHU Guangyou,WANG Shan,et al.Accmulation conditions and favorable areas for natural gas accumulation in the 10 000 meters ultra-deep Sinian-Cambrian in Tarim Basin[J].Acta Petrolei Sinica,2021,42(11),1446-1457. [2] 韦刚健,黄方,马金龙,等.近十年我国非传统稳定同位素地球化学研究进展[J].矿物岩石地球化学通报,2022,41(1):1-44. WEI Gangjian,HUANG Fang,MA Jinlong,et al.Progress of non-traditional stable isotope geochemistry of the past decade in China[J].Bulletin of Mineralogy,Petrology and Geochemistry,2022,41(1):1-44. [3] EMERSON S R,HUESTED S S.Ocean anoxia and the concentrations of molybdenum and vanadium in seawater[J].Marine Chemistry,1991,34(3/4):177-196. [4] MORFORD J L,MARTIN W R,FRANÇOIS R,et al.A model for uranium,rhenium,and molybdenum diagenesis in marine sediments based on results from coastal locations[J].Geochimica et Cosmochimica Acta,2009,73(10):2938-2960. [5] MILLER C A,PEUCKER-EHRENBRINK B,WALKER B D,et al.Re-assessing the surface cycling of molybdenum and rhenium[J].Geochimica et Cosmochimica Acta,2011,75(22):7146-7179. [6] ARNOLD G L,ANBAR A D,BARLING J,et al.Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans[J].Science,2004,304(5667):87-90. [7] BARLING J,ANBAR A D.Molybdenum isotope fractionation during adsorption by manganese oxides[J].Earth and Planetary Science Letters,2004,217(3/4):315-329. [8] GOLDBERG T,ARCHER C,VANCE D,et al.Mo isotope fractionation during adsorption to Fe (oxyhydr) oxides[J].Geochimica et Cosmochimica Acta,2009,73(21):6502-6516. [9] HELZ G R,MILLER C V,CHARNOCK J M,et al.Mechanism of molybdenum removal from the sea and its concentration in black shales:EXAFS evidence[J].Geochimica et Cosmochimica Acta,1996,60(19):3631-3642. [10] VORLICEK T P,HELZ G R.Catalysis by mineral surfaces:implications for Mo geochemistry in anoxic environments[J].Geochimica et Cosmochimica Acta,2002,66(21):3679-3692. [11] ERICKSON B E,HELZ G R.Molybdenum (VI) speciation in sulfidic waters:stability and lability of thiomolybdates[J].Geochimica et Cosmochimica Acta,2000,64(7):1149-1158. [12] BRUCKER R L P,MCMANUS J,SEVERMANN S,et al.Molybdenum behavior during early diagenesis:insights from Mo isotopes[J]. Geochemistry,Geophysics,Geosystems,2009,10(6):Q06010. [13] NÄGLER T F,NEUBERT N,BÖTTCHER M E,et al.Molybdenum isotope fractionation in pelagic euxinia:evidence from the modern Black and Baltic Seas[J].Chemical Geology,2011,289(1/2):1-11. [14] NEUBERT N,NÄGLER T F,BÖTTCHER M E.Sulfidity controls molybdenum isotope fractionation into euxinic sediments:evidence from the modern Black Sea[J].Geology,2008,36(10):775-778. [15] KENDALL B,CREASER R A,GORDON G W,et al.Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang formations,Mcarthur Basin,northern Australia[J].Geochimica et Cosmochimica Acta,2009,73(9):2534-2558. [16] DAHL T W,CANFIELD D E,ROSING M T,et al.Molybdenum evidence for expansive sulfidic water masses in~750Ma oceans[J].Earth and Planetary Science Letters,2011,311(3/4):264-274. [17] CHEN Xi,LING Hongfei,VANCE D,et al.Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J].Nature Communications,2015,6:7142. [18] SCHOLZ F,BAUM M,SIEBERT C,et al.Sedimentary molybdenum cycling in the aftermath of seawater inflow to the intermittently euxinic Gotland Deep,Central Baltic Sea[J].Chemical Geology,2018,491:27-38. [19] ZHU Guangyou,LI Tingting,ZHAO Kun,et al.Mo isotope records from Lower Cambrian black shales,northwestern Tarim Basin (China):implications for the Early Cambrian ocean[J].GSA Bulletin,2022,134(1/2):3-14. [20] WILLE M,NÄGLER T F,LEHMANN B,et al.Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J].Nature,2008,453(7196):767-769. [21] XU Ligang,LEHMANN B,MAO Jingwen,et al.Mo isotope and trace element patterns of Lower Cambrian black shales in South China:multi-proxy constraints on the paleoenvironment[J].Chemical Geology,2012,318-319:45-59. [22] WEN Hanjie,FAN Haifeng,ZHANG Yuxu,et al.Reconstruction of Early Cambrian ocean chemistry from Mo isotopes[J].Geochimica et Cosmochimica Acta,2015,164:1-16. [23] CHENG Meng,LI Chao,ZHOU Lian,et al.Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters:a case study of the Lower Cambrian Niutitang shales,South China[J].Geochimica et Cosmochimica Acta,2016,183:79-93. [24] WEI Guangyi,PLANAVSKY N J,HE Tianchen,et al.Global marine redox evolution from the Late Neoproterozoic to the Early Paleozoic constrained by the integration of Mo and U isotope records[J].Earth-Science Reviews,2021,214:103506. [25] CHENG Meng,LI Chao,CHEN Xi,et al.Delayed Neoproterozoic oceanic oxygenation:evidence from Mo isotopes of the Cryogenian Datangpo Formation[J].Precambrian Research,2018,319:187-197. [26] KENDALL B,GORDON G W,POULTON S W,et al.Molybdenum isotope constraints on the extent of Late Paleoproterozoic ocean euxinia[J].Earth and Planetary Science Letters,2011,307(3/4):450-460. [27] GILLEAUDEAU G J,SAHOO S K,OSTRANDER C M,et al.Molybdenum isotope and trace metal signals in an iron-rich Mesoproterozoic ocean:a snapshot from the Vindhyan Basin,India[J].Precambrian Research,2020,343:105718. [28] BARLING J,ARNOLD G L,ANBAR A D.Natural mass-dependent variations in the isotopic composition of molybdenum[J].Earth and Planetary Science Letters,2001,193(3/4):447-457. [29] SIEBERT C,NÄGLER T F,VON BLANCKENBURG F,et al.Molybdenum isotope records as a potential new proxy for paleoceanography[J].Earth and Planetary Science Letters,2003,211(1/2):159-171. [30] MALINOVSKY D,RODUSHKIN I,BAXTER D C,et al.Molybdenum isotope ratio measurements on geological samples by MC-ICPMS[J].International Journal of Mass Spectrometry,2005,245(1/3):94-107. [31] PIETRUSZKA A J,WALKER R J,CANDELA P A.Determination of mass-dependent molybdenum isotopic variations by MC-ICP-MS:an evaluation of matrix effects[J].Chemical Geology,2006,225(1/2):121-136. [32] WEN Hanjie,ZHANG Yuxu,FAN Haifeng,et al.Mo isotopes in the Lower Cambrian formation of southern China and its implications on paleo-ocean environment[J].Chinese Science Bulletin,2009,54(24):4756-4762. [33] DICKSON A J.A molybdenum-isotope perspective on Phanerozoic deoxygenation events[J].Nature Geoscience,2017,10(10):721-726. [34] CANFIELD D E.The early history of atmospheric oxygen:homage to Robert M.Garrels[J].Annual Review of Earth and Planetary Sciences, 2005,33:1-36. [35] SIEBERT C,KRAMERS J D,MEISEL T,et al.PGE,Re-Os,and Mo isotope systematics in Archean and Early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth[J].Geochimica et Cosmochimica Acta,2005,69(7):1787-1801. [36] KENDALL B,WANG Su,LILLIS P,et al.Evaluation of the molybdenum isotope system as a petroleum tracer:the Phosphoria petroleum system,western U.S.A.[J].Chemical Geology,2023,617:121244. [37] KENDALL B,DAHL T W,ANBAR A D.The stable isotope geochemistry of molybdenum[J].Reviews in Mineralogy and Geochemistry,2017,82(1):683-732. [38] KING E K,PERAKIS S S,PETT-RIDGE J C.Molybdenum isotope fractionation during adsorption to organic matter[J].Geochimica et Cosmochimica Acta,2018,222:584-598. [39] GAO Yongjun,CASEY J F,BERNARDO L M,et al.Vanadium isotope composition of crude oil:effects of source,maturation and biodegradation[J].Geological Society,London,Special Publications,2018,468(1):83-103. [40] ZHU Guangyou,CHEN Feiran,WANG Meng,et al.Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin,China[J].AAPG Bulletin,2018,102(10):2123-2151. [41] CHENG Meng,LI Chao,JIN Chengsheng,et al.Evidence for high organic carbon export to the Early Cambrian seafloor[J].Geochimica et Cosmochimica Acta,2020,287:125-140. [42] 李茜,朱光有,李婷婷,等.U同位素分馏行为及其在环境地球科学中的应用进展[J].地学前缘,2024,31(2):447-471. LI Xi,ZHU Guangyou,LI Tingting,et al.Uranium isotope fractionation and application of uranium isotopes in environmental geosciences-a review[J].Earth Science Frontiers,2024,31(2):447-471. [43] KRUPKA K M,SERNE R J.Geochemical factors affecting the behavior of antimony,cobalt,europium,technetium,and uranium in vadose zone sediments[R].Richland:Pacific Northwest National Lab.,2002. [44] RICHTER S,ALONSO-MUNOZ A,EYKENS R,et al.The isotopic composition of natural uranium samples-measurements using the new n(233U)/n(236U) double spike IRMM-3636[J].International Journal of Mass Spectrometry,2008,269(1/2):145-148. [45] STIRLING C H,ANDERSEN M B,POTTER E K,et al.Low-temperature isotopic fractionation of uranium[J].Earth and Planetary Science Letters,2007,264(1/2):208-225. [46] WEYER S,ANBAR A D,GERDES A,et al.Natural fractionation of 238U/235U[J].Geochimica et Cosmochimica Acta,2008,72(2):345-359. [47] TISSOT F L H,DAUPHAS N.Uranium isotopic compositions of the crust and ocean:age corrections,U budget and global extent of modern anoxia[J].Geochimica et Cosmochimica Acta,2015,167:113-143. [48] ANDERSEN M B,ELLIOTT T,FREYMUTH H,et al.The terrestrial uranium isotope cycle[J].Nature,2015,517(7534):356-359. [49] B RENNECKA G A,HERRMANN A D,ALGEO T J,et al.Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(43):17631-17634. [50] LAU K V,MAHER K,ALTINER D,et al.Marine anoxia and delayed Earth system recovery after the end-Permian extinction[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(9):2360-2365. [51] GILLEAUDEAU G J,ROMANIELLO S J,LUO Genming,et al.Uranium isotope evidence for limited euxinia in Mid-Proterozoic oceans[J].Earth and Planetary Science Letters,2019,521:150-157. [52] ROONEY A D,CANTINE M D,BERGMANN K D,et al.Calibrating the coevolution of Ediacaran life and environment[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(29):16824-16830. [53] KENDALL B,BRENNECKA G A,WEYER S,et al.Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga[J].Chemical Geology,2013,362:105-114. [54] KENDALL B,KOMIYA T,LYONS T W,et al.Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the Late Ediacaran Period[J].Geochimica et Cosmochimica Acta,2015,156:173-193. [55] YANG Shuai,KENDALL B,LU Xinze,et al.Uranium isotope compositions of Mid-Proterozoic black shales:evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flow[J].Precambrian Research,2017,298:187-201. [56] WANG Xiangli,PLANAVSKY N J,HOFMANN A,et al.A Mesoarchean shift in uranium isotope systematics[J].Geochimica et Cosmochimica Acta,2018,238:438-452. [57] WANG Xiangli,OSSA F O,HOFMANN A,et al.Uranium isotope evidence for Mesoarchean biological oxygen production in shallow marine and continental settings[J].Earth and Planetary Science Letters,2020,551:116583. [58] LAU K V,HANCOCK L G,SEVERMANN S,et al.Variable local basin hydrography and productivity control the uranium isotope paleoredox proxy in anoxic black shales[J].Geochimica et Cosmochimica Acta,2022,317:433-456. [59] BEARD B L,JOHNSON C M.High precision iron isotope measurements of terrestrial and lunar material[J].Geochimica et Cosmochimica Acta,1999,63(11/12):1653-1660. [60] 何永胜,胡东平,朱传卫.地球科学中铁同位素研究进展[J].地学前缘,2015,22(5):54-71. HE Yongsheng,HU Dongping,ZHU Chuanwei.Progress of iron isotope geochemistry in geosciences[J].Earth Science Frontiers,2015,22(5):54-71. [61] JOHNSON C M,BEARD B L,RODEN E E.The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth[J].Annual Review of Earth and Planetary Sciences,2008,36:457-493. [62] WELCH S A,BEARD B L,JOHNSON C M,et al.Kinetic and equilibrium Fe isotope fractionation between aqueous Fe (II) and Fe (III)[J].Geochimica et Cosmochimica Acta,2003,67(22):4231-4250. [63] CROAL L R,JOHNSON C M,BEARD B L,et al.Iron isotope fractionation by Fe (II)-oxidizing photoautotrophic bacteria[J].Geochimica et Cosmochimica Acta,2004,68(6):1227-1242. [64] 朱祥坤,李志红,唐索寒,等.早前寒武纪硫铁矿矿床Fe同位素特征及其地质意义--以山东石河庄和河北大川为例[J].岩石矿物学杂志,2008,27(5):429-434. ZHU Xiangkun,LI Zhihong,TANG Suohan,et al.Fe isotope characteristics of early Precambrian pyrite deposits and their geological significance:examples from Shandong and Hebei Provinces[J].Acta Petrologica et Mineralogica,2008,27(5):429-434. [65] WU Lingling,DRUSCHEL G,FINDLAY A,et al.Experimental determination of iron isotope fractionations among Fe2+aq-FeSaq-Mackinawite at low temperatures:implications for the rock record[J].Geochimica et Cosmochimica Acta,2012,89:46-61. [66] ANBAR A D,ROUXEL O.Metal stable isotopes in paleoceanography[J].Annual Review of Earth and Planetary Sciences,2007,35:717-746. [67] FAN Haifeng,ZHU Xiangkun,WEN Hanjie,et al.Oxygenation of Ediacaran ocean recorded by iron isotopes[J].Geochimica et Cosmochimica Acta,2014,140:80-94. [68] ZHANG Feifei,ZHU Xiangkun,YAN Bin,et al.Oxygenation of a Cryogenian ocean (Nanhua Basin,South China) revealed by pyrite Fe isotope compositions[J].Earth and Planetary Science Letters,2015,429:11-19. [69] KUNZMANN M,GIBSON T M,HALVERSON G P,et al.Iron isotope biogeochemistry of Neoproterozoic marine shales[J].Geochimica et Cosmochimica Acta,2017,209:85-105. [70] FAN Haifeng,WEN Hanjie,HAN Tao,et al.Oceanic redox condition during the Late Ediacaran (551-541 Ma),South China[J].Geochimica et Cosmochimica Acta,2018,238:343-356. [71] SHEN Weibing,ZHU Xiangkun,YAN Bin,et al.Secular variation in seawater redox state during the Marinoan Snowball Earth event and implications for eukaryotic evolution[J].Geology,2022,50(11):1239-1244. [72] SAWAKI Y,TAHATA M,KOMIYA T,et al.Redox history of the Three Gorges region during the Ediacaran and Early Cambrian as indicated by the Fe isotope[J].Geoscience Frontiers,2018,9(1):155-172. [73] ZHANG Hongjie,FAN Haifeng,WEN Hanjie,et al.Oceanic chemistry recorded by cherts during the Early Cambrian Explosion,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2020,558:109961. [74] AI Yifei,ZHU Guangyou,LI Tingting,et al.Paleo-marine redox environment fluctuation during the Early Cambrian:insight from iron isotope in the Tarim Basin,China[J].Science of the Total Environment,2024,912:169277. [75] ZHU Guangyou,LI Tingting,HUANG Tianzheng,et al.Quantifying the seawater sulfate concentration in the Cambrian ocean[J].Frontiers in Earth Science,2021,9:767857. [76] LI Chaofeng,CHU Zhuyin,WANG Xuance,et al.A highly sensitive zirconium hydrogen phosphate emitter for Ni isotope determination using thermal ionization mass spectrometry[J].Atomic Spectroscopy,2020,41(6):249-255. [77] ZHAO Zhouqiao,SHEN Bing,ZHU Jianming,et al.Active methanogenesis during the melting of Marinoan Snowball Earth[J].Nature Communication,2021,12:955. [78] GUEGUEN B,SORENSEN J V,LALONDE S V,et al.Variable Ni isotope fractionation between Fe-oxyhydroxides and implications for the use of Ni isotopes as geochemical tracers[J].Chemical Geology,2018,481:38-52. [79] SPIVAK-BIRNDORF L J,WANG Shuijiong,BISH D L,et al.Nickel isotope fractionation during continental weathering[J].Chemical Geology,2018,476:316-326. [80] WASYLENKI L E,HOWE H D,SPIVAK-BIRNDORF L J,et al.Ni isotope fractionation during sorption to ferrihydrite:implications for Ni in banded iron formations[J].Chemical Geology,2015,400:56-64. [81] WANG Shuijiong,WASYLENKI L E.Experimental constraints on reconstruction of Archean seawater Ni isotopic composition from banded iron formations[J].Geochimica et Cosmochimica Acta,2017,206:137-150. [82] FUJII T,MOYNIER F,DAUPHAS N,et al.Theoretical and experimental investigation of nickel isotopic fractionation in species relevant to modern and ancient oceans[J].Geochimica et Cosmochimica Acta,2011,75(2):469-482. [83] LITTLE S H,ARCHER C,MCMANUS J,et al.Towards balancing the oceanic Ni budget[J].Earth and Planetary Science Letters,2020,547:116461. [84] THAUER R K.Biochemistry of methanogenesis:a tribute to Marjory Stephenson[J].Microbiology,1998,144(9):2377-2406. [85] REINHARD C T,PLANAVSKY N J.Biogeochemical controls on the redox evolution of Earth's oceans and atmosphere[J].Elements,2020,16(3):191-196. [86] WANG Shuijiong,RUDNICK R L,GASCHNIG R M,et al.Methanogenesis sustained by sulfide weathering during the Great Oxidation Event[J].Nature Geoscience,2019,12(4):296-300. [87] GRASBY S E,THEM II T R,CHEN Zhuoheng,et al.Mercury as a proxy for volcanic emissions in the geologic record[J].Earth-Science Reviews,2019,196:102880. [88] SHEN Jun,FENG Qinglai,ALGEO T J,et al.Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy[J].Earth and Planetary Science Letters,2020,543:116333. [89] ZHU Guangyou,WANG Pengju,LI Tingting,et al.Mercury record of intense hydrothermal activity during the Early Cambrian,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2021,568:110294. [90] FAN Haifeng,FU Xuewu,WARD J F,et al.Mercury isotopes track the cause of carbon perturbations in the Ediacaran ocean[J].Geology,2021,49(3):248-252. [91] SCHROEDER W H,MUNTHE J.Atmospheric mercury-An overview[J].Atmospheric Environment,1998,32(5):809-822. [92] BLUM J D,SHERMAN L S,JOHNSON M W.Mercury isotopes in earth and environmental sciences[J].Annual Review of Earth and Planetary Sciences,2014,42:249-269. [93] BAGNATO E,OLIVERI E,ACQUAVITA A,et al.Hydrochemical mercury distribution and air-sea exchange over the submarine hydrothermal vents off-shore Panarea Island (Aeolian arc,Tyrrhenian Sea)[J].Marine Chemistry,2017,194:63-78. [94] BERGQUIST B A.Mercury,volcanism,and mass extinctions[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(33):8675-8677. [95] SELIN N E.Global biogeochemical cycling of mercury:a review[J].Annual Review of Environment and Resources,2009,34:43-63. [96] SHEN Jun,YU Jianxin,CHEN Jiubin,et al.Mercury evidence of intense volcanic effects on land during the Permian-Triassic transition[J].Geology,2019,47(12):1117-1121. [97] LAMBORG C H,FITZGERALD W F,O'DONNELL J,et al.A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients[J].Geochimica et Cosmochimica Acta,2002,66(7):1105-1118. [98] MASON R P,FITZGERALD W F.The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean[J].Deep Sea Research Part I:Oceanographic Research Papers,1993,40(9):1897-1924. [99] LAMBORG C,BOWMAN K,HAMMERSCHMIDT C,et al.Mercury in the anthropocene ocean[J].Oceanography,2014,27(1):76-87. [100] RAVICHANDRAN M.Interactions between mercury and dissolved organic matter-A review[J].Chemosphere,2004,55(3):319-331. [101] DUAN Yuhang,HAN D S,BATCHELOR B,et al.Synthesis,characterization,and application of pyrite for removal of mercury[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,490:326-335. [102] BLUM J D,BERGQUIST B A.Reporting of variations in the natural isotopic composition of mercury[J].Analytical And Bioanalytical Chemistry,2007,388(2):353-359. [103] YIN Runsheng,FENG Xinbin,LI Xiangdong,et al.Trends and advances in mercury stable isotopes as a geochemical tracer[J].Trends in Environmental Analytical Chemistry,2014,2:1-10. [104] SHERMAN L S,BLUM J D,NORDSTROM D K,et al.Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift[J].Earth and Planetary Science Letters,2009,279(1/2):86-96. [105] ZHENG Wang,HINTELMANN H.Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio[J].Geochimica et Cosmochimica Acta,2009,73(22):6704-6715. [106] ZHENG Wang,GILLEAUDEAU G J,KAH L C,et al.Mercury isotope signatures record photic zone euxinia in the Mesoproterozoic ocean[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(42):10594-10599. [107] CHEN Jiubin,HINTELMANN H,FENG Xinbin,et al.Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough,ON,Canada[J].Geochimica et Cosmochimica Acta,2012,90:33-46. [108] ŠTROK M,BAYA P A,HINTELMANN H.The mercury isotope composition of Arctic coastal seawater[J].Comptes Rendus Geoscience,2015,347(7/8):368-376. [109] THIBODEAU A M,BERGQUIST B A.Do mercury isotopes record the signature of massive volcanism in marine sedimentary records?[J]. Geology,2017,45(1):95-96. [110] 冯新斌,尹润生,俞奔,等.汞同位素地球化学概述[J].地学前缘,2015,22(5):124-135. FENG Xinbin,YIN Runsheng,YU Ben,et al.A review of Hg isotope geochemistry[J].Earth Science Frontiers,2015,22(5):124-135. [111] 郑旺,赵亚秋,孙若愚,等.汞的稳定同位素分馏机理[J].矿物岩石地球化学通报,2021,40(5):1087-1106. ZHENG Wang,ZHAO Yaqiu,SUN Ruoyu,et al.The mechanism of mercury stable isotope fractionation:a review[J].Bulletin of Mineralogy,Petrology and Geochemistry,2021,40(5):1087-1106. [112] ZHU Guangyou,ZHAO Kun,LI Tingting,et al.Anomalously high enrichment of mercury in Early Cambrian black shales in South China[J].Journal of Asian Earth Sciences,2021,216:104794. [113] ZHAO Kun,ZHU Guangyou,MENG Xianghao,et al.Enrichment of mercury in the Lower Cambrian sedimentary successions by submarine hydrothermal venting[J].Journal of Asian Earth Sciences,2022,240:105439. [114] ZHU Guangyou,WANG Pengju,LI Tingting,et al.Nitrogen geochemistry and abnormal mercury enrichment of shales from the lowermost Cambrian Niutitang Formation in South China:implications for the marine redox conditions and hydrothermal activity[J].Global and Planetary Change,2021,199:103449. [115] 朱光有,张怀顺,汤顺林,等.塔里木盆地海相原油汞同位素组成特征[J].天然气地球科学,2021,32(3):347-355. ZHU Guangyou,ZHANG Huaishun,TANG Shunlin,et al.Characteristics of mercury isotopic composition of marine crude oil in Tarim Basin[J].Natural Gas Geoscience,2021,32(3):347-355. [116] SHIELDS W R,GOLDICH S S,GARNER E L,et al.Natural variations in the abundance ratio and the atomic weight of copper[J].Journal of Geophysical Research,1965,70(2):479-491. [117] MARÉCHAL C,ALBARÉDE F.Ion-exchange fractionation of copper and zinc isotopes[J].Geochimica et Cosmochimica Acta,2002,66(9):1499-1509. [118] ZHU Xiangkun,GUO Y,WILLIAMS R,et al.Mass fractionation processes of transition metal isotopes[J].Earth and Planetary Science Letters,2002,200(1/2):47-62. [119] EHRLICH S,BUTLER I,HALICZ L,et al.Experimental study of the copper isotope fractionation between aqueous Cu (II) and covellite,CuS[J].Chemical Geology,2004,209(3/4):259-269. [120] POKROVSKY O S,VIERS J,EMNOVA E E,et al.Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy (hydr) oxides:possible structural control[J].Geochimica et Cosmochimica Acta,2008,72(7):1742-1757. [121] NAVARRETE J U,BORROK D M,VIVEROS M,et al.Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J].Geochimica et Cosmochimica Acta,2011,75(3):784-799. [122] LITTLE S H,VANCE D,WALKER-BROWN C,et al.The oceanic mass balance of copper and zinc isotopes,investigated by analysis of their inputs,and outputs to ferromanganese oxide sediments[J].Geochimica et Cosmochimica Acta,2014,125:673-693. [123] LITTLE S H,VANCE D,MCMANUS J,et al.Copper isotope signatures in modern marine sediments[J].Geochimica et Cosmochimica Acta,2017,212:253-273. [124] VANCE D,ARCHER C,BERMIN J,et al.The copper isotope geochemistry of rivers and the oceans[J].Earth and Planetary Science Letters,2008,274(1/2):204-213. [125] MATHUR R,RUIZ J,CASSELMAN M J,et al.Use of Cu isotopes to distinguish primary and secondary Cu mineralization in the Cañariaco Norte porphyry copper deposit,northern Peru[J].Mineralium Deposita,2012,47(7):755-762. [126] FRU E C,RODRÍGUEZ N P,PARTIN C A,et al.Cu isotopes in marine black shales record the Great Oxidation Event[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(18):4941-4946. [127] ZAVINA-JAMES N A V,ZERKLE A L,STEELE R C J,et al.A copper isotope investigation of methane cycling in Late Archaean sediments[J].Precambrian Research,2021,362:106267. [128] LV Yiwen,LIU Sheng'ao.Cu and Zn isotopic evidence for the magnitude of organic burial in the mesoproterozoic ocean[J].Journal of Earth Science,2022,33(1):92-99. [129] THIBON F,BLICHERT-TOFT J,ALBAREDE F,et al.A critical evaluation of copper isotopes in Precambrian iron formations as a paleoceanographic proxy[J].Geochimica et Cosmochimica Acta,2019,264:130-140. [130] ACKERMAN L,PAŠAVA J,ŠÍPKOVÁ A,et al.Copper,zinc,chromium and osmium isotopic compositions of the Teplá-Barrandian unit black shales and implications for the composition and oxygenation of the Neoproterozoic-Cambrian ocean[J].Chemical Geology,2019,521:59-75. [131] AI Yifei,ZHU Guangyou,LI Tingting,et al.Copper and zinc isotopes trace the evolution of the Ediacara-Early Cambrian paleo-ocean redox condition in the Tarim Basin,China[J].Applied Geochemistry,2023,150:105588. [132] ZERKLE A,HOUSE C,BRANTLEY S.Biogeochemical signatures through time as inferred from whole microbial genomes[J].American Journal of Science,2005,305(6/8):467-502. [133] PICHAT S,DOUCHET C,ALBARōDE F.Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka[J].Earth and Planetary Science Letters,2003,210(1/2):167-178. [134] 朱祥坤,王跃,闫斌,等.非传统稳定同位素地球化学的创建与发展[J].矿物岩石地球化学通报,2013,32(6):651-688. ZHU Xiangkun,WANG Yue,YAN Bin,et al.Developments of non-traditional stable isotope geochemistry[J].Bulletin of Mineralogy,Petrology and Geochemistry,2013,32(6):651-688. [135] BRYAN A L,DONG Shuofei,WILKES E B,et al.Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength[J].Geochimica et Cosmochimica Acta,2015,157:182-197. [136] JUILLOT F,MARÉCHAL C,PONTHIEU M,et al.Zn isotopic fractionation caused by sorption on goethite and 2-Lines ferrihydrite[J].Geochimica et Cosmochimica Acta,2008,72(19):4886-4900. [137] POKROVSKY O S,VIERS J,FREYDIER R.Zinc stable isotope fractionation during its adsorption on oxides and hydroxides[J].Journal of Colloid and Interface Science,2005,291(1):192-200. [138] GÉLABERT A,POKROVSKY O S,VIERS J,et al.Interaction between zinc and freshwater and marine diatom species:surface complexation and zn isotope fractionation[J].Geochimica et Cosmochimica Acta,2006,70(4):839-857. [139] JOHN S G,GEIS R W,SAITO M A,et al.Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica[J].Limnology and Oceanography,2007,52(6):2710-2714. [140] MARÉCHAL C N,SHEPPARD S M F.Isotopic fractionation of Cu and Zn between chloride and nitrate solutions and malachite or smithsonite at 30℃ and 50℃[J].Geochimica et Cosmochimica Acta,2002,66(15A):A484. [141] ARCHER C,VANCE D.Mass discrimination correction in multiple-collector plasma source mass spectrometry:an example using Cu and Zn isotopes[J].Journal of Analytical Atomic Spectrometry,2004,19(5):656-665. [142] JOHN S G,ROUXEL O J,CRADDOCK P R,et al.Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys[J].Earth and Planetary Science Letters,2008,269(1/2):17-28. [143] JOHN S G,KUNZMANN M,TOWNSEND E J,et al.Zinc and cadmium stable isotopes in the geological record:a case study from the post-snowball Earth Nuccaleena cap dolostone[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2017,466:202-208. [144] LITTLE S H,VANCE D,MCMANUS J,et al.Key role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes[J].Geology,2016,44(3):207-210. [145] MARÉCHAL C,NICOLAS E,DOUCHET C,et al.Abundance of zinc isotopes as a marine biogeochemical tracer[J].Geochemistry,Geophysics,Geosystems,2000,1(5):1015. [146] KUNZMANN M,HALVERSON G P,SOSSI P A,et al.Zn isotope evidence for immediate resumption of primary productivity after snowball Earth[J].Geology,2013,41(1):27-30. [147] FAN Haifeng,ZHANG Hongjie,XIAO Chaoyi,et al.Large Zn isotope variations in the Ni-Mo polymetallic sulfide layer in the Lower Cambrian,South China[J].Gondwana Research,2020,85:224-236. [148] YAN Bin,ZHU Xiangkun,HE Xuexian,et al.Zn isotopic evolution in Early Ediacaran ocean:a global signature[J].Precambrian Research,2019,320:472-483. [149] WANG Xun,LIU Sheng'ao,WANG Zhengrong,et al.Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2018,498:68-82. [150] LIU Sheng'ao,WU Huaichun,SHEN Shuzhong,et al.Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction[J].Geology,2017,45(4):343-346. [151] SWEERE T C,DICKSON A J,JENKYNS H C,et al.Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2(Late Cretaceous)[J].Geology,2018,46(5):463-466. [152] ROSMAN K J R,TAYLOR P D P.Isotopic compositions of the elements 1997(technical report)[J].Pure and Applied Chemistry,1998,70(1):217-235. [153] HUH Y,CHAN L H,EDMOND J M.Lithium isotopes as a probe of weathering processes:Orinoco River[J].Earth and Planetary Science Letters,2001,194(1/2):189-199. [154] WIMPENNY J,COLLA C A,YU Ping,et al.Lithium isotope fractionation during uptake by gibbsite[J].Geochimica et Cosmochimica Acta,2015,168:133-150. [155] BOUCHEZ J,VON BLANCKENBURG F,SCHUESSLER J A.Modeling novel stable isotope ratios in the weathering zone[J].American Journal of Science,2013,313(4):267-308. [156] WIMPENNY J,GÍSLASON S R,JAMES R H,et al.The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt[J].Geochimica et Cosmochimica Acta,2010,74(18):5259-5279. [157] VON STRANDMANN P A E P,KASEMANN S A,WIMPENNY J B.Lithium and lithium isotopes in Earth's surface cycles[J].Elements,2020,16(4):253-258. [158] KISAKVREK B,JAMES R H,HARRIS N B W.Li and δ7Li in Himalayan rivers:proxies for silicate weathering?[J].Earth and Planetary Science Letters,2005,237(3/4):387-401. [159] LEMARCHAND E,CHABAUX F,VIGIER N,et al.Lithium isotope systematics in a forested granitic catchment (Strengbach,Vosges Mountains,France)[J].Geochimica et Cosmochimica Acta,2010,74(16):4612-4628. [160] VON STRANDMANN P A E P,JENKYNS H C,WOODFINE R G.Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2[J].Nature Geoscience,2013,6(8):668-672. [161] KALDERON-ASAEL B,KATCHINOFF J A R,PLANAVSKY N J,et al.A lithium-isotope perspective on the evolution of carbon and silicon cycles[J].Nature,2021,595(7867):394-398. [162] VON STRANDMANN P A E P,JONES M T,WEST A J,et al.Lithium isotope evidence for enhanced weathering and erosion during the Paleocene-Eocene Thermal Maximum[J].Science Advances,2021,7(42):4224. [163] SUN He,XIAO Yilin,GAO Yongjun,et al.Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(15):3782-3787. [164] LECHLER M,VON STRANDMANN P A E P,JENKYNS H C,et al.Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event)[J].Earth and Planetary Science Letters,2015,432:210-222. [165] WARREN J.Dolomite:occurrence,evolution and economically important associations[J].Earth-Science Reviews,2000,52(1/3):1-81. [166] ZHU Guangyou,ZHAO Kun,YU Huimin,et al.Silicon isotopic constraints on the genesis of cherts in the Ordovician sedimentary succession in Tarim Basin,western China[J].Journal of Asian Earth Sciences,2021,215:104795. [167] VAHRENKAMP V C,SWART P K.New distribution coefficient for the incorporation of strontium into omite and its implications for the formation[J].Geology,1990,18(5):387-391 |
[1] | 朱光有, 李茜. 白云岩成因类型与研究方法进展[J]. 石油学报, 2023, 44(7): 1167-1190. |
[2] | 孔悦, 高晓鹏, 石开波, 刘波, 姜伟民, 于进鑫, 何卿, 吴淳. 塔北地区奥陶系鹰山组斑状白云岩成因及储层意义[J]. 石油学报, 2023, 44(4): 598-611. |
[3] | 赵东方, 谭秀成, 罗文军, 王小芳, 徐伟, 罗思聪, 唐大海, 罗垚, 曾伟. 早成岩期岩溶特征及其对古老深层碳酸盐岩储层的成因启示——以川中地区磨溪8井区灯影组四段为例[J]. 石油学报, 2022, 43(9): 1236-1252. |
[4] | 潘立银, 郝毅, 梁峰, 胡安平, 俸月星, 赵建新. 白云岩储层成因的激光原位U-Pb定年和同位素地球化学新证据——以四川盆地西北部中二叠统栖霞组白云岩储层为例[J]. 石油学报, 2022, 43(2): 223-233. |
[5] | 李茜, 朱光有, 李婷婷, 周磊, 吴雨轩, 田连杰. 川中地区寒武系洗象池组白云岩Mg同位素特征与成因机制[J]. 石油学报, 2022, 43(11): 1585-1603. |
[6] | 白莹, 李建忠, 刘伟, 徐兆辉, 徐旺林, 李欣, Abitkazy Taskyn. 塔里木盆地西北部下寒武统白云岩特征及多重白云石化模式[J]. 石油学报, 2021, 42(9): 1174-1191. |
[7] | 郭小文, 陈家旭, 袁圣强, 何生, 赵建新. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束——以渤海湾盆地东营凹陷为例[J]. 石油学报, 2020, 41(3): 284-291. |
[8] | 严威, 杨果, 易艳, 左小军, 王孝明, 娄洪, 饶华文. 塔里木盆地柯坪地区上震旦统白云岩储层特征与成因[J]. 石油学报, 2019, 40(3): 295-307,321. |
[9] | 崔永谦, 汪建国, 田建章, 赵宗举, 肖阳, 王培玺, 田然, 宋春刚, 肖飞. 华北地台中北部寒武系-奥陶系白云岩储层特征及主控因素[J]. 石油学报, 2018, 39(8): 890-901. |
[10] | 吴和源, 汪建国, 王培玺, 赵宗举, 龚发雄. 渤海湾盆地南堡凹陷中—下寒武统白云岩成因及储层形成机理[J]. 石油学报, 2018, 39(4): 416-426. |
[11] | 刘建强, 郑浩夫, 刘波, 刘红光, 石开波, 郭荣涛, 张学丰. 川中地区中二叠统茅口组白云岩特征及成因机理[J]. 石油学报, 2017, 38(4): 386-398. |
[12] | 黄成刚, 常海燕, 崔俊, 李亚锋, 路艳平, 李翔, 马新民, 吴梁宇. 柴达木盆地西部地区渐新世沉积特征与油气成藏模式[J]. 石油学报, 2017, 38(11): 1230-1243. |
[13] | 张德民, 段太忠, 郝雁, 张涛, 仲向云. 扎格罗斯盆地下白垩统Qamchuqa组白云岩储层形成机理[J]. 石油学报, 2016, 37(S1): 121-130. |
[14] | 任影, 钟大康, 高崇龙, 杨雪琪, 谢瑞, 李卓沛, 邓闵心, 周勇成. 川东寒武系龙王庙组白云岩地球化学特征、成因及油气意义[J]. 石油学报, 2016, 37(9): 1102-1115. |
[15] | 冯明友, 强子同, 沈平, 张健, 陶艳忠, 夏茂龙. 四川盆地高石梯-磨溪地区震旦系灯影组热液白云岩证据[J]. 石油学报, 2016, 37(5): 587-598. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1