[1] 孙龙德, 刘合, 朱如凯, 等. 中国页岩油革命值得关注的十个问题[J].石油学报, 2023, 44(12):2007-2019. SUN Longde, LIU He, ZHU Rukai, et al.Ten noteworthy issues on shale oil revolution in China[J].Acta Petrolei Sinica, 2023, 44(12): 2007-2019. [2] 雷群, 管保山, 才博, 等.储集层改造技术进展及发展方向[J].石油勘探与开发, 2019, 46(3):580-587. LEI Qun, GUAN Baoshan, CAI Bo, et al.Technological progress and prospects of reservoir stimulation[J].Petroleum Exploration and Development, 2019, 46(3):605-613. [3] 翁定为, 雷群, 管保山, 等.中美页岩油气储层改造技术进展及发展方向[J].石油学报, 2023, 44(12):2297-2307. WENG Dingwei, LEI Qun, GUAN Baoshan, et al.Progress and development directions of reservoir stimulation techniques for shale oil and gas in China and the United States[J].Acta Petrolei Sinica, 2023, 44(12):2297-2307. [4] JIN Ge, ROY B.Hydraulic-fracture geometry characterization using low-frequency DAS signal[J].The Leading Edge, 2017, 36(12):962-1044. [5] NATH F, HOQUE S M S, MAHMOOD M N.Recent advances and new insights of fiber optic techniques in fracture diagnostics used for unconventional reservoirs[R].URTEC 3871673, 2023. [6] LI Xinyang, CHAVARRIA A J, OUKACI Y.Realtime wellbore digitalization for stimulations using multi-well fiber optics[R].SPE 207710, 2021. [7] BUSETTI S, KAZEI V, MERRY H.Assessing geological deformation using distributed fiber optic sensing[R].SPE 213495, 2023. [8] 隋微波, 温长云, 孙文常, 等.水力压裂分布式光纤传感联合监测技术研究进展[J].天然气工业, 2023, 43(2):87-103. SUI Weibo, WEN Changyun, SUN Wenchang, et al.Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J].Natural Gas Industry, 2023, 43(2):87-103. [9] UGUETO G A, HAFFENER J, MONDAL S, et al.Spatial and temporal effects on low frequency DAS and microseismic implications on hydraulic fracture geometry and well interactions[R].SPE 209180, 2022. [10] LIU Yongzan, WU Kan, JIN Ge, et al.Rock deformation and strain-rate characterization during hydraulic fracturing treatments:insights for interpretation of low-frequency distributed acoustic-sensing signals[J].SPE Journal, 2020, 25(5):2251-2264. [11] TANG Jin, ZHU Ding.Characterize fracture development through strain rate measurements by distributed acoustic sensor DAS[R]. SPE 205267, 2022. [12] TAN Yunhui, WANG Shugang, RIJKEN M C M, et al.Geomechanical template for distributed acoustic sensing strain patterns during hydraulic fracturing[J].SPE Journal, 2021, 26(2):627-638. [13] ZHANG Zhishuai, FANG Zijun, STEFANI J, et al.Fiber optic strain monitoring of hydraulic stimulation:geomechanical modeling and sensitivity analysis[R].URTEC 2020-2648, 2020. [14] ZHANG Zhishuai, FANG Zijun, STEFANI J, et al.Modeling of fiber-optic strain responses to hydraulic fracturing[J].Geophysics, 2020, 85(6):A45-A50. [15] 陈铭, 郭天魁, 胥云, 等.水平井压裂多裂缝扩展诱发光纤应变演化机理[J].石油勘探与开发, 2022, 49(1):183-193. CHEN Ming, GUO Tiankui, XU Yun, et al.Evolution mechanism of optical fiber strain induced by multi-fracture growth during fracturing in horizontal wells[J].Petroleum Exploration and Development, 2022, 49(1):211-222. [16] HAFFENER J, HAUSTVEIT K, INGLE T.Did we break new rock? Utilizing diagnostics to differentiate new fracture creation vs old fracture reactivation:a Meramec and Wolfcamp study[R].SPE 209123, 2022. [17] UGUETO G A, TODEA F, DAREDIA T, et al.Can you feel the strain? DAS strain fronts for fracture geometry in the BC Montney, Groundbirch[R].SPE 195943, 2019. [18] LEGGETT S, REID T, ZHU Ding, et al.Experimental investigation of low-frequency distributed acoustic strain-rate responses to propagating fractures[J].SPE Journal, 2022, 27(6):3814-3828. [19] LEGGETT S.Low-frequency distributed acoustic sensing shape factors for fracture front detection[J].Interpretation, 2023, 11(2): SB11-SB20. [20] LEGGETT S, CHEN Ming.Evaluation of a rapid diagnostic tool to estimate geometry evolution of multiple simultaneously propagating fractures from cross-well fiber optic strain measurements[R].SPE 217820, 2024. [21] LIU Yongzan, LIANG Lin, ZEROUG S.Inference of intermittent hydraulic fracture tip advancement through inversion of low-frequency distributed acoustic sensing data[J].Rock Mechanics and Rock Engineering, 2024:1-17. [22] CROUCH S L, STARFIELD A M.Boundary element methods in solid mechanics:with applications in rock mechanics and geological engineering[M].London, Boston:Allen & Unwin, 1983. [23] 隋微波, 刘荣全, 崔凯.水力压裂分布式光纤声波传感监测的应用与研究进展[J].中国科学:技术科学, 2021, 51(4):371-387. SUI Weibo, LIU Rongquan, CUI Kai.Application and research progress of distributed optical fiber acoustic sensing monitoring for hydraulic fracturing[J].Scientia Sinica Technologica, 2021, 51(4):371-387. [24] SNEDDON I N, ELLIOT H A.The opening of a Griffith crack under internal pressure[J].Quarterly of Applied Mathematics, 1946, 4(3):262-267. [25] DETOURNAY E.Mechanics of hydraulic fractures[J].Annual Review of Fluid Mechanics, 2016, 48:311-339. [26] DONTSOV E V.Morphology of multiple constant height hydraulic fractures versus propagation regime[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2022, 46(6):1177-1183. [27] CHEN Ming, ZHANG Shicheng, LI Sihai, et al.An explicit algorithm for modeling planar 3D hydraulic fracture growth based on a super-time-stepping method[J].International Journal of Solids and Structures, 2020, 191/192(1):370-389. [28] 唐焕文, 秦学志.实用最优化方法[M].2版.大连:大连理工大学出版社, 2000. TANG Huanwen, Qin Xuezhi.Practical methods of optimization[M].2nd ed.Dalian:Dalian University of Technology Press, 2000. [29] LINDSEY N J, RADEMACHER H, AJO-FRANKLIN J B.On the broadband instrument response of fiber-optic DAS arrays[J].Journal of Geophysical Research:Solid Earth, 2020, 125(2):e2019JB018145. [30] J OHNSON D S, ARAGON C R, MCGEOCH L A, et al.Optimization by simulated annealing:an experimental evaluation; part I, graph partitioning [J].Operations research, 1989, 37(6):865-892. [31] 刘文岭, 韩大匡.数字孪生油气藏:智慧油气田建设的新方向[J].石油学报, 2022, 43(10):1450-1461. LIU Wenling, HAN Dakuang.Digital twin system of oil and gas reservoirs:a new direction for smart oil and gas field construction[J].Acta Petrolei Sinica, 2022, 43(10):1450-1461. [32] 王飞, 周彤, 许佳鑫, 等.考虑支撑剂运移的压裂停泵压降模型[J].石油学报, 2023, 44(4):647-656. WANG Fei, ZHOU Tong, XU Jiaxin, et al.Fracturing pump-stopping pressure drop model considering proppant migration[J].Acta Petrolei Sinica, 2023, 44(4):647-656. [33] 赵辉, 刘邓, 宋本彪, 等.基于数据空间反演的油藏实时生产优化方法[J].石油学报, 2022, 43(1):67-74. ZHAO Hui, LIU Deng, SONG Benbiao, et al.Optimization method for real-time reservoir production based on data space inversion[J].Acta Petrolei Sinica, 2022, 43(1):67-74. [34] 李俊超, 戴城, 方思冬.基于微地震约束的多尺度复杂压裂缝网自动反演新方法[J].天然气工业, 2023, 43(12):46-54. LI Junchao, DAI Cheng, FANG Sidong.An automatic inversion method for parameter determination of multi-scale complex hydraulic fracture network based on microseismic constraint[J].Natural Gas Industry, 2023, 43(12):46-54. [35] ZHANG Zhishuai, DISIENA J, BEVC D, et al.Hydraulic fracture characterization by integrating multidisciplinary data from the Hydraulic Fracturing Test Site 2 (HFTS-2)[R].URTEC 2021-5039, 2021. [36] UGUETO G A, WOJTASZEK M, HUCKABEE P T, et al.An integrated view of hydraulic induced fracture geometry in hydraulic fracture test site 2[R].URTEC 2021-5396, 2021. [37] ZHAO Yu, BESSA F, SAHNI V, et al.Key learnings from hydraulic fracturing test site-2 (HFTS-2), Delaware basin[R].URTEC 2021-5229, 2021. [38] WANG Jiehao, TAN Yunhui, RIJKEN M, et al.Observations and modeling of fiber optic strain on hydraulic fracture height growth in hydraulic fracturing test site 2 (HFTS-2)[J].SPE Journal, 2022, 27(2):1109-1122. |