[1] 王宗礼, 娄钰, 潘继平.中国油气资源勘探开发现状与发展前景[J].国际石油经济, 2017, 25(3):1-6. WANG Zongli, LOU Yu, PAN Jiping.China’s oil & gas resources exploration and development and its prospect[J].International Petroleum Economics, 2017, 25(3):1-6. [2] 白林, 姚钰, 李双涛, 等.基于深度学习特征提取的岩石图像矿物成分分析[J].中国矿业, 2018, 27(7):178-182. BAI Lin, YAO Yu, LI Shuangtao, et al.Mineral composition analysis of rock image based on deep learning feature extraction[J].China Mining Magazine, 2018, 27(7):178-182. [3] 冯雅兴, 龚希, 徐永洋, 等.基于岩石新鲜面图像与孪生卷积神经网络的岩性识别方法研究[J].地理与地理信息科学, 2019, 35(5): 89-94. FENG Yaxing, GONG Xi, XU Yongyang, et al.Lithology recognition based on fresh rock images and twins convolution neural network[J]. Geography and Geo-Information Science, 2019, 35(5):89-94. [4] FAN Guangpeng, CHEN Feixiang, CHEN Danyu, et al.Recognizing multiple types of rocks quickly and accurately based on lightweight CNNs model[J].IEEE Access, 2020, 8:55269-55278. [5] 熊越晗, 刘东燕, 刘东升, 等.基于岩样细观图像深度学习的岩性自动分类方法[J].吉林大学学报(地球科学版), 2021, 51(5):1597-1604. XIONG Yuehan, LIU Dongyan, LIU Dongsheng, et al.Automatic lithology classification method based on deep learning of rock sample meso-image[J].Journal of Jilin University (Earth Science Edition), 2021, 51(5):1597-1604. [6] LI Na, HAO Huizhen, GU Qing, et al.A transfer learning method for automatic identification of sandstone microscopic images[J].Computers & Geosciences, 2017, 103:111-121. [7] 雷明锋, 张运波, 王卫东, 等.岩石岩性Mask R-CNN智能识别方法与应用研究[J].铁道科学与工程学报, 2022, 19(11):3372-3382. LEI Mingfeng, ZHANG Yunbo, WANG Weidong, et al.Investigation and application on lithology intelligent recognition method based on mask R-CNN[J].Journal of Railway Science and Engineering, 2022, 19(11):3372-3382. [8] 彭伟航, 白林, 商世为, 等.基于改进InceptionV3模型的常见矿物智能识别[J].地质通报, 2019, 38(12):2059-2066. PENG Weihang, BAI Lin, SHANG Shiwei, et al.Common mineral intelligent recognition based on improved InceptionV3[J].Geological Bulletin of China, 2019, 38(12):2059-2066. [9] 张中亚.砂岩薄片图像分割与识别研究[D].合肥:中国科学技术大学, 2020. ZHANG Zhongya.Research on image segmentation and recognition of sandstone thin section[D].Hefei:University of Science and Technology of China, 2020. [10] 郭艳军, 周哲, 林贺洵, 等.基于深度学习的智能矿物识别方法研究[J].地学前缘, 2020, 27(5):39-47. GUO Yanjun, ZHOU Zhe, LIN Hexun, et al.The mineral intelligence identification method based on deep learning algorithms[J].Earth Science Frontiers, 2020, 27(5):39-47. [11] BORGES H P, DE AGUIAR M S.Mineral classification using machine learning and images of microscopic rock thin section[C]//18th Mexican International Conference on Artificial Intelligence:Advances in Soft Computing.Xalapa:Springer, 2019:63-76. [12] MAITRE J, BOUCHARD K, BÉDARD L P.Mineral grains recognition using computer vision and machine learning[J].Computers & Geosciences, 2019, 130:84-93. [13] 黄辉红.基于深度学习的泥岩岩性与风化程度检测[D].成都:电子科技大学, 2022. HUANG Huihong.Detection of mudstone lithology and weathering degree based on deep learning[D].Chengdu:University of Electronic Science and Technology of China, 2022. [14] 严良平, 彭泽豹, 葛家晟, 等.基于深度学习的岩石风化度分类方法:114048803A[P].2022-02-15. YAN Liangping, PENG Zebao, GE Jiasheng, et al.Classification method of rock weathering degree based on deep learning:114048803A[P].2022-02-15. [15] CHEN Zhuoheng, LIU Xiaojun, YANG Jijin, et al.Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in western Canada Sedimentary Basin[J].Computers & Geosciences, 2020, 138:104450. [16] WANG Yingda, SHABANINEJAD M, ARMSTRONG R T, et al.Deep neural networks for improving physical accuracy of 2D and 3D multi-mineral segmentation of rock micro-CT images[J].Applied Soft Computing, 2021, 104:107185. [17] LI Chunxiao, WANG Dongmei, KONG Lingyun.Application of machine learning techniques in mineral classification for scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) images[J].Journal of Petroleum Science and Engineering, 2021, 200:108178. [18] LI Bingke, NIE Xin, CAI Jianchao, et al.U-Net model for multi-component digital rock modeling of shales based on CT and QEMSCAN images[J].Journal of Petroleum Science and Engineering, 2022, 216:110734. [19] 司晨冉, 王仁超, 邸阔, 等.一种基于Mask R-CNN和分水岭算法的岩石颗粒图像分割方法[J].水电能源科学, 2020, 38(11):129-132. SI Chenran, WANG Renchao, DI Kuo, et al.A rock particle image segmentation method based on mask R-CNN and watershed algorithm[J]. Water Resources and Power, 2020, 38(11):129-132. [20] 王伟, 李擎, 张德政, 等.基于深度学习的矿石图像处理研究综述[J].工程科学学报, 2023, 45(4):621-631. WANG Wei, LI Qing, ZHANG Dezheng, et al.A survey of ore image processing based on deep learning[J].Chinese Journal of Engineering, 2023, 45(4):621-631. [21] 王浩, 熊淑华, 何海波, 等.基于改进UNet3+的岩心图像颗粒提取算法[J].计算机系统应用, 2024, 33(1):199-205. WANG Hao, XIONG Shuhua, HE Haibo, et al.Core image particle extraction algorithm based on improved UNet3+[J].Computer Systems & Applications, 2024, 33(1):199-205. [22] 薛章涛, 张航, 潘少伟, 等.基于改进U-Net的岩心铸体薄片图像分割研究[J].甘肃科学学报, 2023, 35(4):9-14. XUE Zhangtao, ZHANG Hang, PAN Shaowei, et al.Study on image segmentation of core founding slice based on improved U-Net[J]. Journal of Gansu Sciences, 2023, 35(4):9-14. [23] TANG Kunning, WANG Yingda, MOSTAGHIMI P, et al.Deep convolutional neural network for 3D mineral identification and liberation analysis[J].Minerals Engineering, 2022, 183:107592. [24] 陈雁, 李祉呈, 程超, 等.FLU-net:用于表征页岩储层微观孔隙的深度全卷积网络[J].海洋地质前沿, 2021, 37(8):34-43. CHEN Yan, LI Zhicheng, CHENG Chao, et al.FLU-net:a deep fully convolutional neural network for shale reservoir micro-pore characterization [J].Marine Geology Frontiers, 2021, 37(8):34-43. [25] JOBE T D, VITAL-BRAZIL E, KHAIT M.Geological feature prediction using image-based machine learning[J].Petrophysics, 2018, 59(6):750-760. [26] DUARTE-CORONADO D, TELLEZ-RODRIGUEZ J, PIRES DE LIMA R, et al.Deep convolutional neural networks as an estimator of porosity in thin-section images for unconventional reservoirs[C]//SEG Technical Program Expanded Abstracts 2019.Texas:Society of Exploration Geophysicists, 2019:3181-3184. [27] MISBAHUDDIN M.Estimating petrophysical properties of shale rock using conventional neural networks CNN[R].SPE 204272, 2020. [28] FLORES A G R, FISHER Q, LORINCZI P.Convolutional neural networks for the classification of the microstructure of tight sandstone[C]//International Petroleum Technology Conference.Texas:IPTC, 2021:IPTC-21208-MS. [29] ALQAHTANI N, ARMSTRONG R T, MOSTAGHIMI P.Deep learning convolutional neural networks to predict porous media properties[R].SPE 191906, 2018. [30] ANTLE R.Automated core fracture characterization by computer vision and image analytics of CT images[R].SPE 195181, 2019. [31] KIRILLOV A, MINTUN E, RAVI N, et al.Segment anything[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV).Paris:IEEE, 2023:3992-4003. [32] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Montreal:NIPS, 2014:2672-2680. [33] MOSSER L, DUBRULE O, BLUNT M J.Reconstruction of three-dimensional porous media using generative adversarial neural networks[J]. Physical Review E, 2017, 96(4):043309. [34] MOSSER L, DUBRULE O, BLUNT M J.Stochastic reconstruction of an oolitic limestone by generative adversarial networks[J].Transport in Porous Media, 2018, 125(1):81-103. [35] LIU X F, PENG J H, ZHANG J X, et al.Research on characterization methods of efflorescence on cement-based decorative mortar[J].IOP Conference Series:Materials Science and Engineering, 2019, 504:012007. [36] 杨永飞, 刘夫贵, 姚军, 等.基于生成对抗网络的页岩三维数字岩芯构建[J].西南石油大学学报(自然科学版), 2021, 43(5):73-83. YANG Yongfei, LIU Fugui, YAO Jun, et al.Reconstruction of 3D shale digital rock based on generative adversarial network[J].Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(5):73-83. [37] ZHAO Jiuyu, WANG Fuyong, CAI Jianchao.3D tight sandstone digital rock reconstruction with deep learning[J].Journal of Petroleum Science and Engineering, 2021, 207:109020. [38] FENG Junxi, TENG Qizhi, LI Bing, et al.An end-to-end three-dimensional reconstruction framework of porous media from a single two-dimensional image based on deep learning[J].Computer Methods in Applied Mechanics and Engineering, 2020, 368:113043. [39] VOLKHONSKIY D, MURAVLEVA E, SUDAKOV O, et al.Reconstruction of 3D porous media from 2D slices[R/OL].(2021-08-06).https://arxiv.org/pdf/1901.10233. [40] ZHENG Qiang, ZHANG Dongxiao.RockGPT:reconstructing three-dimensional digital rocks from single two-dimensional slice with deep learning[J].Computational Geosciences, 2022, 26(3):677-696. [41] DONG Chao, LOY C C, HE Kaiming, et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [42] WANG Yingda, ARMSTRONG R T, MOSTAGHIMI P.Enhancing resolution of digital rock images with super resolution convolutional neural networks[J].Journal of Petroleum Science and Engineering, 2019, 182:106261. [43] LEDIG C, THEIS L, HUSZÁR F, et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE, 2017:105-114. [44] 朱联祥, 郑逸.自注意力SRGAN在岩石CT图像超分辨中的应用研究[J].西安石油大学学报(自然科学版), 2022, 37(2):131-137. ZHU Lianxiang, ZHENG Yi.Applications of self-attention SRGAN in super resolution reconstruction of rock CT image[J].Journal of Xi’an Shiyou University (Natural Science Edition), 2022, 37(2):131-137. [45] CHEN Honggang, HE Xiaohai, TENG Qizhi, et al.Super-resolution of real-world rock microcomputed tomography images using cycle-consistent generative adversarial networks[J].Physical Review E, 2020, 101(2):023305. [46] 姜黎明, 刘宁静, 孙建孟, 等.利用CT图像与压汞核磁共振构建高精度三维数字岩心[J].测井技术, 2016, 40(4):404-407. JIANG Liming, LIU Ningjing, SUN Jianmeng, et al.Higher precision 3D digital core constructed by CT scanning image with mercury penetration and NMR[J].Well Logging Technology, 2016, 40(4):404-407. [47] WANG Yu, PU Jie, WANG Lihua, et al.Characterization of typical 3D pore networks of Jiulaodong Formation shale using Nano-transmission X-ray microscopy[J].Fuel, 2016, 170:84-91. [48] 崔利凯, 孙建孟, 闫伟超, 等.基于多分辨率图像融合的多尺度多组分数字岩心构建[J].吉林大学学报(地球科学版), 2017, 47(6): 1904-1912. CUI Likai, SUN Jianmeng, YAN Weichao, et al.Construction of multi-scale and -component digital cores based on fusion of different resolution core images[J].Journal of Jilin University (Earth Science Edition), 2017, 47(6):1904-1912. [49] 李俊键, 成宝洋, 刘仁静, 等.基于数字岩心的孔隙尺度砂砾岩水敏微观机理[J].石油学报, 2019, 40(5):594-603. LI Junjian, CHENG Baoyang, LIU Renjing, et al.Microscopic mechanism of water sensitivity of pore-scale sandy conglomerate based on digital core[J].Acta Petrolei Sinica, 2019, 40(5):594-603. [50] 陶金雨, 张昌民, 郭旭光, 等.磨圆度定量表征在扇三角洲沉积微相判别中的应用——以玛湖凹陷百口泉组砾岩为例[J].沉积学报, 2020, 38(5):956-965. TAO Jinyu, ZHANG Changmin, GUO Xuguang, et al.Application of quantitative roundness characterization to identify sedimentary microfacies in fan delta deposits:a case study of conglomerates in the Baikouquan Formation, Mahu sag[J].Acta Sedimentologica Sinica, 2020, 38(5):956-965. [51] 陶金雨, 张昌民, 朱锐.基于岩芯图像的砾石磨圆度测量方法:105953766A[P].2016-09-21. TAO Jinyu, ZHANG Changmin, ZHU Rui.Gravel grinding roundness measurement method based on core images:105953766A[P].2016-09-21. [52] 双棋.砾石磨圆度定量方法探究[J].资源信息与工程, 2019, 34(1) :103-105. SHUANG Qi.Exploration on the quantitative method of gravel grinding roundness[J].Resource Information and Engineering, 2019, 34(1):103-105. [53] 任义丽.基于深度学习的油气储层薄片智能鉴定方法[D].北京:中国石油勘探开发研究院, 2023. REN Yili.Rock thin-section of reservoir analysis and identification based on artificial intelligent technique[D].Beijing:PetroChina Research Institute of Petroleum Exploration & Development, 2023. [54] WU Yuqi, TAHMASEBI P, LIN Chengyan, et al.A comprehensive investigation of the effects of organic-matter pores on shale properties:a multicomponent and multiscale modeling[J].Journal of Natural Gas Science and Engineering, 2020, 81:103425. [55] 吴玉其.低渗透储层数字岩心分析及微观剩余油研究[D].青岛:中国石油大学(华东), 2021. WU Yuqi.Digital core analysis of low-permeability reservoirs and research on microscopic remaining oil[D].Qingdao:China University of Petroleum (East China), 2021. |