石油学报 ›› 2024, Vol. 45 ›› Issue (8): 1296-1308.DOI: 10.7623/syxb202408011

• 综述 • 上一篇    

岩心智能识别技术内涵与展望

刘合1,2, 任义丽1,2,3, 李欣1,2,3, 朱如凯2, 胡延旭4, 刘茜2,3, 苏乾潇2,3, 吴健平4, 李彬4   

  1. 1. 多资源协同陆相页岩油绿色开采全国重点实验室 黑龙江大庆 163712;
    2. 中国石油勘探开发研究院 北京 100083;
    3. 中国石油天然气集团有限公司勘探开发人工智能技术研发中心 北京 100083;
    4. 中国石油华北油田公司勘探开发研究院 河北任丘 062552
  • 收稿日期:2024-01-03 修回日期:2024-04-24 发布日期:2024-09-04
  • 通讯作者: 任义丽,女,1987年3月生,2023年获中国石油勘探开发研究院博士学位,现为中国石油勘探开发研究院高级工程师,主要从事计算机视觉、深度学习、大模型等技术在油气地质中的应用研究。Email:renyili@petrochina.com.cn
  • 作者简介:刘合,男,1961年3月生,2002年获哈尔滨工程大学博士学位,现为中国工程院院士、中国石油勘探开发研究院副总工程师,主要从事低渗透油气藏增产改造、机采系统提高系统效率、分层注水和井筒工程控制技术、油气人工智能等研究。Email:liuhe@petrchina.com.cn
  • 基金资助:
    国家自然科学基金面上项目“知识与数据融合的油气储层薄片智能鉴定方法”(No.42372175)和中国石油天然气股份有限公司科技项目“油气勘探开发人工智能关键技术研究”(2023DJ84)资助。

Connotation and prospect of intelligent recognition technology for cores

Liu He1,2, Ren Yili1,2,3, Li Xin1,2,3, Zhu Rukai2, Hu Yanxu4, Liu Xi2,3, Su Qianxiao2,3, Wu Jianping4, Li Bin4   

  1. 1. National Key Laboratory for Green Mining of Multi-resource Collabrative Continental Shale Oil, Heilongjiang Daqing 163712, China;
    2. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    3. CNPC Artificial Intelligence Technology R&D Center for Exploration and Development, Beijing 100083, China;
    4. Exploration and Development Research Institute, PetroChina Huabei Oilfield Company, Hebei Renqiu 062550, China
  • Received:2024-01-03 Revised:2024-04-24 Published:2024-09-04

摘要: 岩心分析可为油气成烃成储成藏史研究、提高采收率和寻找优质储量提供支撑。随着油气勘探开发转向深层和非常规领域,储层非均质性强,原有基于岩心的单点式分析已不能满足需要,须将多种尺度的岩心图像和岩心实验数据进行综合分析。岩心分析从传统的人工描述,发展到现在的数字岩心并向岩心智能识别的方向发展。通过概括岩心图像分析的国内外研究现状,提出了岩心智能识别技术的定义和内涵;以利用微米—纳米CT图像重构全直径岩心孔隙结构的高分辨率CT图像为例,对岩心智能识别技术进行了阐述;对岩心智能识别技术在储层评价、压裂方案设计、微观渗流机理研究等领域的应用进行了展望。岩心智能识别技术的提出反映了人工智能技术在油气领域已经开始同步升级发展,即从单点业务智能化、提速提效的初级阶段,向着多尺度多模态数据融合、垂直领域大模型技术应用、提质发展的更高阶段转变。

关键词: 人工智能, 岩心智能识别, 岩石组分, 孔隙结构, 岩石结构

Abstract: Core analysis can provide support for studying the history of hydrocarbon generation, reservoir formation, and petroleum accumulation, improving oil and gas recovery rates, and searching for large-scale high-quality reserves. With the hydrocarbon exploration and development shifting towards deep and unconventional fields, the reservoirs are highly heterogeneous, and so the previous single-point analysis based on core can no longer meet the needs. It is necessary to comprehensively analyze the multi-scale images and experimental data of cores. Moreover, core analysis has developed from conventional manual description to the current digital core technology, and further towards the intelligent recognition of cores. Firstly, the paper comprehensively summarizes the current research status of core image analysis at home and abroad, and then proposes the definition and connotation of intelligent recognition technology for cores; next, the intelligent recognition of cores has been elaborated based on the case study of how to reconstruct the high-resolution CT images of full-diameter pore structure using micro-nano CT images; finally, the application of intelligent recognition technology for cores in reservoir evaluation, fracturing scheme design, and micro-seepage mechanism research is prospected. The proposal of intelligent recognition technology for cores reflects that artificial intelligence technology has begun to upgrade and develop synchronously in the oil and gas field, i.e., from the primary stage of intelligentization and speed and efficiency improvement of single-point business to a higher stage of multi-scale and multi-modal data fusion, application of large model technology in vertical fields, as well as high-quality development.

Key words: artificial intelligence, intelligent recognition of cores, rock constituents, pore structure, rock structure

中图分类号: