石油学报 ›› 2024, Vol. 45 ›› Issue (9): 1409-1421.DOI: 10.7623/syxb202409008

• 油田开发 • 上一篇    

压驱一体化双子表面活性剂滑溜水特性及高效渗吸排驱机制

赵明伟, 戴彩丽, 刘棚, 高明伟, 吴一宁, 袁彬   

  1. 中国石油大学(华东)山东省油田化学重点实验室 中国石油大学(华东)非常规油气开发教育部重点实验室 山东青岛 266580
  • 收稿日期:2023-05-18 修回日期:2024-04-13 发布日期:2024-10-10
  • 通讯作者: 戴彩丽,女,1971年3月生,2006年获中国石油大学(华东)博士学位,现为中国石油大学(华东)石油工程学院教授、博士生导师,主要从事提高采收率与采油化学的研究与应用工作。Email:daicl@upc.edu.cn
  • 作者简介:赵明伟,男,1984年9月生,2011年获山东大学博士学位,现为中国石油大学(华东)石油工程学院教授、博士生导师,主要从事提高采收率与采油化学的研究与应用工作。Email:zhaomingwei@upc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.52222403,No.52288101,No.52120105007)和泰山学者青年专家计划项目(tsqn202211079)资助。

Characteristics and efficient imbibition-oil displacement mechanism of gemini surfactant slickwater for integrated fracturing flooding technology

Zhao Mingwei, Dai Caili, Liu Peng, Gao Mingwei, Wu Yining, Yuan Bin   

  1. Shandong Key Laboratory of Oilfield Chemistry, China University of Petroleum; Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum, Shandong Qingdao 266580, China
  • Received:2023-05-18 Revised:2024-04-13 Published:2024-10-10

摘要: 压裂-增能-排驱一体化技术被认为是超低渗油藏高效开发的重要技术手段,为满足"小加量、强减阻、高排油、低伤害"的压驱工艺需求,基于疏水缔合和静电屏蔽作用,研发了双子表面活性剂滑溜水压裂液。体系由质量分数为0.21%双子表面活性剂YZS18-YZS18、0.17%甜菜碱助剂COHSB和0.17%反离子助剂NaPts组 成。该体系表现出优良的压裂特性和界面调控特性,80 ℃ 连续循环剪切30 min,减阻率达75%以上,减阻保留率大于98%;岩心动态滤失伤害率仅为3.2%,较聚合物滑溜水岩心伤害率降低78.9%;破胶液界面张力可降至10-1mN/m;润湿反转能力强,可将油湿表面反转为水湿。通过物理模拟和核磁共振技术相结合探究了体系渗吸排驱机制。研究结果表明,相比注水吞吐和常规聚合物滑溜水增能排驱,双子表面活性剂滑溜水体系降压率最高可达73.5%;排驱采出程度为15.5%,是注水吞吐的2.9倍,是聚合物滑溜水的1.6倍;相比滤失后直接返排,焖井可将排驱采出程度提高27.0%~31.1%,揭示了双子表面活性剂滑溜水"走得远、排得净、采得多"的高效排驱机制。焖井可进一步有效强化油水渗吸置换,渗吸过程中,小孔原油动用程度最高,为72.1%。渗吸初期采收率主要贡献来源于小孔,而中后期采收率主要贡献源于中孔和大孔,优化排驱工艺能使中孔和大孔原油得到更高程度动用。

关键词: 双子表面活性剂, 滑溜水, 压裂特性, 界面调控, 渗吸, 排驱机制

Abstract: The integrated fracturing-energizing-displacement technology is considered a critical means for efficient development of ultra-low permeability reservoirs. To meet the technological requirements of "low dosage, strong drag reduction, high oil displacement recovery and low damage", a gemini surfactant slickwater fracturing fluid was developed based on hydrophobic association and electrostatic shielding effect. The system consists of 0.21% gemini surfactant YZS18-YZS18, 0.17% betaine additive COHSB and 0.17% counterion additive NaPts. It exhibits excellent fracturing and interface control characteristics, with a drag reduction rate of more than 75% and a retained drag reduction rate of more than 98% after continuous cyclic shearing at 80 ℃ for 30 min. The damage rate in the ultra-low permeability core is only 3.2%, 78.9% lower than that of the polymer slickwater. The interfacial tension of gel breaking liquid can be reduced to 10-1mN/m, and the strong wettability alteration ability can reverse oil wetting to water wetting. The imbibition and oil displacement mechanism was further explored by the combination of physical simulation and nuclear magnetic resonance technology. The results show that compared with water flooding soak and conventional polymer slickwater system, the gemini surfactant slickwater system can achieve a pressure reduction rate up to 73.5% ; the oil displacement recovery is 15.5%, 2.9 and 1.6 times that by water flooding soak and polymer slickwater, respectively. Compared with the direct flowback after filtration, well soaking can increase the oil displacement recovery by 27.0% to 31.1%. The gemini surfactant slickwater system demonstrates the high-efficiency oil displacement mechanism of "long-distance filtrating, thorough drainage, and high recovery". Well soaking can enhance the oil-water imbibition replacement effect. During imbibition process, the crude oil in small holes shows the highest utilization rate of 72.1%. At the initial stage of imbibition, the crude oil was mainly recovered from small holes; in the mid-to-late stage of imbibition, the oil was mainly originated from the medium and large holes. Optimizing oil displacement process can help achieve a high utilization rate of crude oil in medium and large holes.

Key words: gemini surfactant, slickwater, fracturing characteristics, interface control, imbibition, oil displacement mechanism

中图分类号: