[1] 金之钧,朱东亚,胡文瑄,等. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006,80(2):245-253. JIN Zhijun,ZHU Dongya,HU Wenxuan,et al.Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J].Acta Geologica Sinica,2006,80(2):245-253. [2] 朱东亚,金之钧,胡文瑄.塔中地区热液改造型白云岩储层[J].石油学报,2009,30(5):698-704. ZHU Dongya,JIN Zhijun,HU Wenxuan.Hydrothermal alteration dolomite reservoir in Tazhong area[J].Acta Petrolei Sinica,2009,30(5):698-704. [3] 王坤,胡素云,胡再元,等.塔里木盆地古城地区寒武系热液作用及其对储层发育的影响[J].石油学报,2016,37(4):439-453. WANG Kun,HU Suyun,HU Zaiyuan,et al.Cambrian hydrothermal action in Gucheng area,Tarim Basin and its influences on reservoir development[J].Acta Petrolei Sinica,2016,37(4):439-453. [4] 陈轩,赵文智,张利萍,等.川中地区中二叠统构造热液白云岩的发现及其勘探意义[J].石油学报,2012,33(4):562-569. CHEN Xuan,ZHAO Wenzhi,ZHANG Liping,et al.Discovery and exploration significance of structure-controlled hydrothermal dolomites in the Middle Permian of the central Sichuan Basin[J].Acta Petrolei Sinica,2012,33(4):562-569. [5] 金小燕,杜晓峰,王清斌,等.渤海海域火山热流体及其对碳酸盐岩优质储层的控制作用[J].石油实验地质,2018,40(6):800-807. JIN Xiaoyan,DU Xiaofeng,WANG Qingbin,et al.Volcanic hydrothermal fluid activity and its influence on carbonate reservoirs in Bohai Sea area[J].Petroleum Geology & Experiment,2018,40(6):800-807. [6] 董月霞,周海民,夏文臣.南堡凹陷火山活动与裂陷旋回[J].石油与天然气地质,2000,21(4):304-307. DONG Yuexia,ZHOU Haimin,XIA Wenchen.Volcanic activities and rift-subsidence cycles in Nanpu sag[J].Oil & Gas Geology,2000,21(4):304-307. [7] 王玉萍,董春梅,陈洪德,等.鄂尔多斯盆地中西部奥陶纪热液活动的证据及其对储层发育的影响[J].海相油气地质,2014,19(2): 23-31. WANG Yuping,DONG Chunmei,CHEN Hongde,et al.Petrological evidence of Ordovician hydrothermal activities and its geological significance to reservoir development in central and western parts of Ordos Basin[J].Marine Origin Petroleum Geology,2014,19(2):23-31. [8] 何文渊,赵莹,钟建华,等.松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J].岩性油气藏,2024,36(3): 1-18. HE Wenyuan,ZHAO Ying,ZHONG Jianhua,et al.Characteristics and significance of micron pores and micron fractures in shale oil reservoirs of Cretaceous Qingshankou Formation in Gulong sag,Songliao Basin[J].Lithologic Reservoirs,2024,36(3):1-18. [9] 陈昭年,陈发景.松辽盆地反转构造运动学特征[J].现代地质,1996,10(3):390-396. CHEN Zhaonian,CHEN Fajing.Kinematic characteristics of inversion structures in Songliao Basin[J].Geoscience,1996,10(3):390-396. [10] 王凤兰,付志国,王建凯,等.松辽盆地古龙页岩油储层特征及分类评价[J].大庆石油地质与开发,2021,40(5):144-156. WANG Fenglan,FU Zhiguo,WANG Jiankai,et al.Characteristics and classification evaluation of Gulong shale oil reservoir in Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(5):144-156. [11] 高瑞祺.泥岩异常高压带油气的生成排出特征与泥岩裂缝油气藏的形成[J].大庆石油地质与开发,1984,3(1):160-167. GAO Ruiqi.Characteristics of petroleum generation and expulsion in abnormal pressure shale zones and the formation of fractured shale reservoirs[J].Petroleum Geology & Oilfield Development in Daqing,1984,3(1):160-167. [12] 孙龙德,刘合,何文渊,等.大庆古龙页岩油重大科学问题与研究路径探析[J].石油勘探与开发,2021,48(3):453-463. SUN Longde,LIU He,HE Wenyuan,et al.An analysis of major scientific problems and research paths of Gulong shale oil in Daqing oilfield,NE China[J].Petroleum Exploration and Development,2021,48(3):453-463. [13] 孙龙德.古龙页岩油(代序)[J].大庆石油地质与开发,2020,39(3):1-7. SUN Longde.Gulong shale oil (preface)[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(3):1-7. [14] 何文渊,蒙启安,冯子辉,等.松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践[J].石油学报,2022,43(1):1-14. HE Wenyuan,MENG Qi’an,FENG Zihui,et al.In-situ accumulation theory & exploration and development practice of Gulong shale oil in Songliao Basin[J].Acta Petrolei Sinica,2022,43(1):1-14. [15] 何文渊,崔宝文,王凤兰,等.松辽盆地古龙凹陷白垩系青山口组储集空间与油态研究[J].地质论评,2022,68(2):693-741. HE Wenyuan,CUI Baowen,WANG Fenglan,et al.Study on reservoir spaces and oil states of the Cretaceous Qingshankou Formation in Gulong sag,Songliao Basin[J].Geological Review,2022,68(2):693-741. [16] 何文渊,赵莹,钟建华,等.松辽盆地古龙凹陷青山口组页岩油储层中有机质微孔特征[J].地质论评,2023,69(3):1161-1183. HE Wenyuan,ZHAO Ying,ZHONG Jianhua,et al.Study on organic matter and micropores of Qingshankou Formation shale oil reservoir in Gulong sag,Songliao Basin[J].Geological Review,2023,69(3):1161-1183. [17] 何文渊,白雪峰,钟建华,等.松辽盆地古龙页岩油储层干酪根的有机元素组成及其N元素的地球化学意义[J].地质学报,2024,98(6):1840-1866. HE Wenyuan,BAI Xuefeng,ZHONG Jianhua,et al.Organic element compositions and its N geochemical significances of the kerogen of Gulong shale oil reservoir in Songliao Basin[J].Acta Geologica Sinica,2024,98(6):1840-1866. [18] 何文渊,崔宝文,张金友,等.松辽盆地北部嫩江组中-低成熟页岩油地质特征及勘探突破[J].石油学报,2024,45(6):900-913. HE Wenyuan,CUI Baowen,ZHANG Jinyou,et al.Geological characteristics and exploration breakthroughs of the middle to low mature shale oil of Nenjiang Formation in northern Songliao Basin[J].Acta Petrolei Sinica,2024,45(6):900-913. [19] 张博为,张居和,冯子辉,等.松辽盆地青山口组古龙页岩轻质原油形成地质条件与资源潜力[J].石油学报,2021,42(12):1625-1639. ZHANG Bowei,ZHANG Juhe,FENG Zihui,et al.Geological conditions and resource potential for the formation of light crude oil from Gulong shale in Qingshankou Formation,Songliao Basin[J].Acta Petrolei Sinica,2021,42(12):1625-1639. [20] DAVIESGR,SMITH JRLB.Structurally controlled hydrothermal dolomite reservoir facies:an overview[J].AAPG Bulletin,2006,90(11):1641-1690. [21] 何文渊.松辽盆地古龙页岩油储层黏土中纳米孔和纳米缝的发现及其意义[J].大庆石油地质与开发,2022,41(3):1-13. HE Wenyuan.Discovery and significance of nano pores and nano fractures of clay in Gulong shale oil reservoir in Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2022,41(3):1-13. [22] 何文渊.松辽盆地古龙凹陷页岩油储层中的纳孔纳缝及其原位成藏理论初探[J].地学前缘,2023,30(1):156-173. HE Wenyuan.Preliminary study on nanopores,nanofissures,and in situ accumulation of Gulong shale oil[J].Earth Science Frontiers,2023,30(1):156-173. [23] BENNETT R H,BRYANT W R,KELLER G H.Clay fabric and geotechnical properties of selected submarine sediment cores from the Mississippi Delta[R].Mississippi:No.9,U.S.Department of Commerce/NOAA/ERL,1977. [24] GUY PLINT A.Mud dispersal across a Cretaceous prodelta:storm-generated,wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies[J].Sedimentology,2014,61(3):609-647. [25] FONTANA E,MEXIAS A S,RENAC C,et al.Hydrothermal alteration of volcanic rocks in Seival Mine Cu-mineralization-Camaquã Basin-Brazil (part I):chloritization process and geochemical dispersion in alteration halos[J].Journal of Geochemical Exploration,2017,177:45-60. [26] BARTON P B,BETHKEP M.Chalcopyrite disease in sphalerite:pathology and epidemiology[J].American Mineralogist,1987,72(5/6): 451-467. [27] LEPETIT P,BENTE K,DOERING T,et al.Crystal chemistry of Fe-containing sphalerites[J].Physics and Chemistry of Minerals,2003,30(4):185-191. [28] COOK N J,CIOBANU C L,PRING A,et al.Trace and minor elements in sphalerite:a LA-ICPMS study[J].Geochimicaet Cosmochimica Acta,2009,73(16):4761-4791. [29] MARTÍN J D,SOLER I GIL A.An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to 850℃ and up to 1 GPa[J].Geochimicaet Cosmochimica Acta,2005,69(4):995-1006. [30] MAO Zhihao,CHENG Yanbo,LIU Jiajun,et al.Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated Tungsten ore field in the Jiangxin Province,China[J].Ore Geology Reviews,2013,53:422-433. [31] VILA T,SILLITOE R H.Gold-rich porphyry systems in the Maricunga Belt,northern Chile[J].Economic Geology,1991,86(6):1238-1260. [32] ABIDI R,SLIM-SHIMI N,MARIGNAC C,et al.The origin of sulfate mineralization and the nature of the BaSO4-SrSO4 solid-solution series in the Ain Allega and El Aguiba ore deposits,northern Tunisia[J].Ore Geology Reviews,2012,48:165-179. [33] KUSAKABE M,ROBINSON B W.Oxygen and sulfur isotope equilibria in the BaSO4-HSO4-H2O system from 110 to 350℃ and applications[J].Geochimicaet Cosmochimica Acta,1977,41(8):1033-1040. [34] LUPULESCU M V,HUGHES J M,CHIARENZELLI J R,et al.Texture,crystal structure,and composition of fluorapatites from iron oxide-apatite (ioa) deposits,eastern Adirondack Mountains,New York[J].The Canadian Mineralogist,2017,55(3):399-417. [35] APUKHTINA O B,KAMENETSKY V S,EHRIG K,et al.Early,deep magnetite-fluorapatite mineralization at the Olympic dam Cu-U-Au-Ag deposit,South Australia[J].Economic Geology,2017,112(6):1531-1542. [36] LEROY N,BRES E.Structure and substitutions in fluorapatite[J].European Cells & Materials,2001,2:36-48. [37] SLACK J F,KELLEY K D,ANDERSON V M,et al.Multistage hydrothermal silicification and Fe-Ti-As-Sb-Ge-REE enrichment in the red dog Zn-Pb-Ag district,northern Alaska:geochemistry,origin,and exploration applications[J].Economic Geology,2004,99(7):1481-1508. [38] DOBRZHINETSKAYA L,BOZHILOV K N,GREEN II H W.The solubility of TiO2 in olivine:implications for the mantle wedge environment [J].Chemical Geology,2000,163(1/4):325-338. [39] MILLIKEN K L.The silicified evaporite syndrome-two aspects of silicification history of former evaporite nodules from southern Kentucky and northern Tennessee[J].Journal of Sedimentary Petrology,1979,49(1):245-256. [40] SUN Ningliang,HE Wenyuan,ZHONG Jianhua et al.Widespread development of bedding-parallel calcite veins in medium-high maturity organic-rich lacustrine shales (Upper Cretaceous Qingshankou Formation,northern Songliao Basin,NE China):implications for hydrocarbon generation and horizontal compression[J].Marine and Petroleum Geology,2023,158:106544. [41] 朱国文,王小军,张金友,等.松辽盆地陆相页岩油富集条件及勘探开发有利区[J].石油学报,2023,44(1):110-124. ZHU Guowen,WANG Xiaojun,ZHANG Jinyou,et al.Enrichment conditions and favorable zones for exploration and development of continental shale oil in Songliao Basin[J].Acta Petrolei Sinica,2023,44(1):110-124. [42] 曹金华.松辽盆地综合地球物理剖面地质解释[D].长春:吉林大学,2017. CAO Jinhua.Geological interpretation of integrated geophysical profile in Songliao Basin,NE China[D].Changchun:Jilin University,2017. |