石油学报 ›› 2024, Vol. 45 ›› Issue (10): 1492-1506.DOI: 10.7623/syxb202410004

• 地质勘探 • 上一篇    

微波辐射加热对页岩有机质生烃和化学结构的影响机制——与常规加热的对比

王民1,2, 张宇辰1,2, 邓仔晓3, 潘宝昕1,2, 李明1,2, 吴艳1,2   

  1. 1. 深层油气全国重点实验室(中国石油大学(华东)) 山东青岛 266580;
    2. 中国石油大学(华东)地球科学与技术学院 山东青岛 266580;
    3. 大庆油田有限责任公司勘探开发研究院 黑龙江大庆 163712
  • 收稿日期:2023-12-29 修回日期:2024-05-06 发布日期:2024-11-02
  • 通讯作者: 王民,男,1981年3月生,2010年获东北石油大学博士学位,现为中国石油大学(华东)教授,主要从事非常规油气资源地质评价和研究工作。Email:Wangm@upc.edu.cn
  • 作者简介:王民,男,1981年3月生,2010年获东北石油大学博士学位,现为中国石油大学(华东)教授,主要从事非常规油气资源地质评价和研究工作。Email:Wangm@upc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.42072147)资助。

Influence mechanism of microwave irradiation heating on hydrocarbon generation and chemical structure of shale organic matter: a comparative study with conventional heating

Wang Min1,2, Zhang Yuchen1,2, Deng Zixiao3, Pan Baoxin1,2, Li Ming1,2, Wu Yan1,2   

  1. 1. National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Shandong Qingdao 266580, China;
    2. School of Geoscience, China University of Petroleum (East China), Shandong Qingdao 266580, China;
    3. Exploration and Development Research Institute, PetroChina Daqing Oilfield Co., Ltd., Heilongjiang Daqing 163712, China
  • Received:2023-12-29 Revised:2024-05-06 Published:2024-11-02

摘要: 原位加热技术被认为是解决中—低成熟页岩油开发最有效的手段,其中,微波辐射加热相比于常规加热由于具有加热效率高、原油品质好等优点而备受关注。为了进一步明确微波辐射加热对页岩有机质生烃和化学结构的影响,以及微波辐射加热与常规加热的差异,基于自主研发的MPS-1型页岩微波热解仪,结合岩石热解、总有机碳、X射线衍射、傅里叶变换红外光谱实验和生烃动力学等实验和技术手段,通过对松辽盆地青山口组一段(青一段)富有机质泥页岩开展微波辐射加热,同时结合常规加热进行对比,揭示泥页岩在2种加热条件下的生烃产率、产物特征以及化学结构的演化特征。研究结果表明:微波辐射加热能够有效降低反应的活化能,促进干酪根热解生烃过程中的一系列化学反应,如甲基侧链和C—C桥键断裂、硫醇基裂解等,使页岩有机质可以更早地裂解生成长链烷烃和小分子烃类化合物。相比于常规加热,页岩样品在经相同温度的微波辐射加热后能够生成更多的油气,加热的效率更高,页岩有机质的裂解生烃更加彻底,生烃转化率更高,干酪根的脂肪族含量更少,芳构化程度更大。微波辐射加热促进了干酪根脂肪链的断键分解、羧酸结构脱除、长链烷烃分解等反应,促使干酪根在裂解阶段生成了更多的长链烷烃,重质组分在裂解阶段生成了更多的小分子烷烃,尤其是甲烷。此外,微波辐射加热能够促进链烷烃的脱氢以及硫醇基分解反应,促使页岩气体组分中产生更多的烯烃类气体和H2S。

关键词: 微波辐射, 青山口组, 生烃, 页岩油, 化学结构演化

Abstract: In situ heating technology is considered as the most effective means to solve problems for the development of medium to low maturity shale oil. Compared with conventional heating, microwave irradiation heating has the advantages of high heating efficiency and excellent oil quality, and thus has attracted much attention. This study aims to further clarify the effect of microwave irradiation heating on hydrocarbon generation and chemical structure of organic matter in shale, as well as the differences between microwave irradiation and conventional heating. Specifically, based on the independently developed microwave pyrolysis instrument of MPS-1 type, in combination with Rock-Eval pyrolysis, total organic carbon, X-ray diffraction, Fourier transform infrared spectroscopy, and hydrocarbon generation kinetics, microwave irradiation heating was carried out on organic rich shale in Member 1 of Qingshankou Formation in Songliao Basin. Meanwhile, conventional heating was performed for comparison. This reveals the hydrocarbon generation yield, product characteristics, and chemical structure evolution characteristics of shale under the two heating conditions. The results show that microwave radiation heating can effectively reduce the activation energy of the reaction and promote a series of chemical reactions during the pyrolysis and hydrocarbon generation process of kerogen, such as methyl side chain and C-C bond cleavage, and thiol group cracking, allowing the shale organic matter to decompose and produce long-chain alkanes and small molecule hydrocarbon compounds earlier. Compared to conventional heating, shale samples heated by microwave irradiation at the same temperature can generate more oil and gas, with higher heating efficiency. The pyrolysis hydrocarbon generation process of shale organic matter is more complete, and the hydrocarbon generation conversion rate is higher. Kerogen has lower aliphatic content and a greater degree of aromatization. Microwave irradiation heating promotes the breaking of aliphatic chain bonds, removal of carboxylic acid structure, and decomposition of long-chain alkanes in kerogens, leading to the generation of more long-chain alkanes in the stage of kerogen cracking, and more small molecule alkanes, especially methane, during the cracking of heavy components. In addition, microwave irradiation heating can promote the dehydrogenation of alkanes and the decomposition of thiol groups, leading to the production of more olefin gases and H2S in shale gas components.

Key words: microwave irradiation, Qingshankou Formation, hydrocarbon generation, shale oil, chemical structure change

中图分类号: