[1] 金之钧,朱如凯,梁新平,等.当前陆相页岩油勘探开发值得关注的几个问题[J].石油勘探与开发,2021,48(6):1276-1287. JIN Zhijun,ZHU Rukai,LIANG Xinping,et al.Several issues worthy of attention in current lacustrine shale oil exploration and development[J].Petroleum Exploration and Development,2021,48(6):1276-1287. [2] 王民,马睿,李进步,等.济阳坳陷古近系沙河街组湖相页岩油赋存机理[J].石油勘探与开发,2019,46(4):789-802. WANG Min,MA Rui,LI Jinbu,et al.Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang depression,Bohai Bay Basin,China[J].Petroleum Exploration and Development,2019,46(4):789-802. [3] 赵文智,胡素云,侯连华.页岩油地下原位转化的内涵与战略地位[J].石油勘探与开发,2018,45(4):537-545. ZHAO Wenzhi,HU Suyun,HOU Lianhua.Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J].Petroleum Exploration and Development,2018,45(4):537-545. [4] 王建,郭秋麟,赵晨蕾,等.中国主要盆地页岩油气资源潜力及发展前景[J].石油学报,2023,44(12):2033-2044. WANG Jian,GUO Qiulin,ZHAO Chenlei,et al.Potentials and prospects of shale oil-gas resources in major basins of China[J].Acta Petrolei Sinica,2023,44(12):2033-2044. [5] 赵文智,胡素云,侯连华,等.中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发,2020,47(1):1-10. ZHAO Wenzhi,HU Suyun,HOU Lianhua,et al.Types and resource potential of continental shale oil in China and its boundary with tight oil[J].Petroleum Exploration and Development,2020,47(1):1-10. [6] SAIF T,LIN Qingyang,BUTCHER A R,et al.Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography,automated ultra-high resolution SEM,MAPS Mineralogy and FIB-SEM[J].Applied Energy,2017,202:628-647. [7] JIN Xu,WANG Xiaoqi,YAN Weipeng,et al.Exploration and casting of large scale microscopic pathways for shale using electrodeposition[J].Applied Energy,2019,247:32-39. [8] 孙龙德,刘合,何文渊,等.大庆古龙页岩油重大科学问题与研究路径探析[J].石油勘探与开发,2021,48(3):453-463. SUN Longde,LIU He,HE Wenyuan,et al.An analysis of major scientific problems and research paths of Gulong shale oil in Daqing oilfield,NE China[J].Petroleum Exploration and Development,2021,48(3):453-463. [9] SPEIGHT J.In situ retorting[M]//SPEIGHT J.Shale oil and gas production processes.Amsterdam:Elsevier,2020:849-871. [10] BEER G,ZHANG E,WELLINGTON S,et al.Shell’s in situ conversion process-factors affecting the properties of produced shale oil[C]//Proceedings of the 28th Oil Shale Symposium.Golden:Colorado School of Mines,2008. [11] FOWLER T D,VINEGAR H J.Oil shale ICP-Colorado field pilots[R].SPE 121164,2009. [12] HASCAKIR B,AKIN S.Recovery of Turkish oil shales by electromagnetic heating and determination of the dielectric properties of oil shales by an analytical method[J].Energy & Fuels,2010,24(1):503-509. [13] RYAN R C,FOWLER T D,BEER G L,et al.Shell’s in situ conversion process-from laboratory to field pilots[M]//OGUNSOLA O I.Oil shale:a solution to the liquid fuel dilemma.Washington:American Chemical Society,2010,1032:161-183. [14] 郭秋麟,侯连华,王建,等.原位转化页岩油资源潜力评价方法及其应用[J].石油学报,2022,43(12):1750-1757. GUO Qiulin,HOU Lianhua,WANG Jian,et al.An evaluation method of resource potential of in-situ converted shale oil and its application[J].Acta Petrolei Sinica,2022,43(12):1750-1757. [15] ZHANG Shuichang,MI Jingkui,HE Kun.Synthesis of hydrocarbon gases from four different carbon sources and hydrogen gas using a gold-tube system by Fischer-Tropsch method[J].Chemical Geology,2013,349-350:27-35. [16] YANG Zhaozhong,ZHU Jingyi,LI Xiaogang,et al.Experimental investigation of the transformation of oil shale with fracturing fluids under microwave heating in the presence of nanoparticles[J].Energy & Fuels,2017,31(10):10348-10357. [17] BRIDGES J,TAFLOVE A,SNOW R.Method for in situ heat processing of hydrocarbonaceous formations:US4140180[P].1979-02-20. [18] PARE J R J.Survey of recent industrial applications of microwave energy applications[J].Journal of Microwave Power and Electromagnetic Energy,2008,42(4):24-44. [19] 刘洪林,刘德勋,方朝合,等.利用微波加热开采地下油页岩的技术[J].石油学报,2010,31(4):623-625. LIU Honglin,LIU Dexun,FANG Chaohe,et al.Microwave heating technology of in-situ oil shale developing[J].Acta Petrolei Sinica,2010,31(4):623-625. [20] AL-GHARBLI S I,AZZAM M O,AL-ADDOUS M.Microwave-assisted solvent extraction of shale oil from Jordanian oil shale[J].Oil Shale,2015,32(3):240-251. [21] BERA A,BABADAGLI T.Effect of native and injected nano-particles on the efficiency of heavy oil recovery by radio frequency electromagnetic heating[J].Journal of Petroleum Science and Engineering,2017,153:244-256. [22] CHEN Jinhong,GEORGI D T,LIU Huihai.Electromagnetic thermal stimulation of shale reservoirs for petroleum production[J].Journal of Natural Gas Science and Engineering,2018,59:183-192. [23] CHEN Jinhong,ALTHAUS S M,LIU Huihai,et al.Electromagnetic-heating enhancement of source rock permeability for high recovery[J].Fuel,2021,283:118976. [24] WANG Min,ZHANG Yuchen,LI Jinbu,et al.Thermal and nonthermal effect of microwave irradiation on the pore microstructure and hydrocarbon generation of organic matter in shale[J].Marine and Petroleum Geology,2023,150:106151. [25] EL HARFI K,MOKHLISSE A,CHANÂA M B,et al.Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation[J].Fuel,2000,79(7):733-742. [26] 王擎,桓现坤,寇震,等.微波场中油页岩及半焦升温特性[J].微波学报,2009,25(1):92-96. WANG Qing,HUAN Xiankun,KOU Zhen,et al.Temperature rising characteristic of oil shale and semi-coke under the microwave field[J].Journal of Microwaves,2009,25(1):92-96. [27] 李小龙,郑德温,方朝合,等.微波干馏方法是开发页岩油的有效手段[J].天然气工业,2012,32(9):116-120. LI Xiaolong,ZHENG Dewen,FANG Chaohe,et al.Evaluation of shale oils treated by an effective means of microwave retorting[J].Natural Gas Industry,2012,32(9):116-120. [28] 杨兆中,朱静怡,李小刚,等.微波加热技术在非常规油资源中的研究现状与展望[J].化工进展,2016,35(11):3478-3483. YANG Zhaozhong,ZHU Jingyi,LI Xiaogang,et al.Progress in researches on microwave heating in unconventional oil resources[J].Chemical Industry and Engineering Progress,2016,35(11):3478-3483. [29] 朱静怡.纳米磁性材料辅助微波加热油页岩的实验研究[D].成都:西南石油大学,2017. ZHU Jingyi.Experimental investigation on pyrolysis of oil shale by microwave heating assisted by magnetic nanoparticles[D].Chengdu:Southwest Petroleum University,2017. [30] CHANAA M B,LALLEMANT M,MOKHLISSE A.Pyrolysis of Timahdit,Morocco,oil shales under microwave field[J].Fuel,1994,73(10):1643-1649. [31] HE Lu,MA Yue,YUE Changtao,et al.Transformation mechanisms of organic S/N/O compounds during microwave pyrolysis of oil shale:a comparative research with conventional pyrolysis[J].Fuel Processing Technology,2021,212:106605. [32] NETO A,THOMAS S,BOND G,et al.The oil shale transformation in the presence of an acidic BEA zeolite under microwave irradiation[J].Energy & Fuels,2014,28(4):2365-2377. [33] DE LA HOZ A,DÍAZ-ORTIZ A,MORENO A.Microwaves in organic synthesis.Thermal and non-thermal microwave effects[J].Chemical Society Reviews,2005,34(2):164-178. [34] HU Yuanan,HE Yuanzhen,CHENG Hefa.Microwave-induced degradation of N-nitrosodimethylamine (NDMA)sorbed in zeolites:effect of mineral surface chemistry and non-thermal effect of microwave[J].Journal of Cleaner Production,2018,174:1224-1233. [35] 何文渊,蒙启安,冯子辉,等.松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践[J].石油学报,2022,43(1):1-14. HE Wenyuan,MENG Qi’an,FENG Zihui,et al.In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin[J].Acta Petrolei Sinica,2022,43(1):1-14. [36] BEHAR F,BEAUMONT V,PENTEADO H L D B.Rock-Eval 6 technology:performances and developments[J].Oil & Gas Science and Technology,2001,56(2):111-134. [37] S ' RODON J, DRITS V A,MCCARTY D K,et al.Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations[J].Clays and Clay Minerals,2001,49(6):514-528. [38] WANG Min,LU Shuangfang,XUE Haitao.Kinetic simulation of hydrocarbon generation from lacustrine type Ⅰ kerogen from the Songliao Basin:model comparison and geological application[J].Marine and Petroleum Geology,2011,28(9):1714-1726. [39] WANG Min,LI Zhongsheng,HUANG Wenbiao,et al.Coal pyrolysis characteristics by TG-MS and its late gas generation potential[J].Fuel,2015,156:243-253. [40] BURNHAM A K,MCCONAGHY J R.Semi-open pyrolysis of oil shale from the Garden Gulch Member of the Green River Formation[J].Energy & Fuels,2014,28(12):7426-7439. [41] CHEN Zhuoheng,JIANG Chunqing.A data driven model for studying kerogen kinetics with application examples from Canadian sedimentary basins[J].Marine & Petroleum Geology,2015,67:795-803. [42] CHEN Zhuoheng,JIANG Chunqing,LAVOIE D,et al.Model-assisted Rock-Eval data interpretation for source rock evaluation:examples from producing and potential shale gas resource plays[J].International Journal of Coal Geology,2016,165:290-302. [43] CRADDOCK P R,VAN LE DOAN T,BAKE K,et al.Evolution of kerogen and bitumen during thermal maturation via semi-open pyrolysis investigated by infrared spectroscopy[J].Energy & Fuels,2015,29(4):2197-2210. [44] HOU Lianhua,MA Weijiao,LUO Xia,et al.Chemical structure changes of lacustrine Type-Ⅱ kerogen under semi-open pyrolysis as investigated by solid-state 13C NMR and FT-IR spectroscopy[J].Marine and Petroleum Geology,2020,116:104348. [45] DURAND B,ESPITALIÉ J.Geochemical studies on the organic matter from the Douala Basin (Cameroon)—Ⅱ.Evolution of kerogen[J].Geochimica et Cosmochimica Acta,1976,40(7):801-808. [46] GANZ H,KALKREUTH W.Application of infrared spectroscopy to the classification of kerogen types and the evaluation of source rock and oil shale potentials[J].Fuel,1987,66(5):708-711. [47] IGLESIAS M J,JIMENEZ A,LAGGOUN-DEFARGE F,et al.FTIR study of pure vitrains and associated coals[J].Energy & Fuels,1995,9(3):458-466. [48] KISTER J,GUILIANO M,LARGEAU C,et al.Characterization of chemical structure,degree of maturation and oil potential of Torbanites (type Ⅰ kerogens) by quantitative FT-i.r.spectroscopy[J].Fuel,1990,69(11):1356-1361. [49] SUGGATE R P,DICKINSON W W.Carbon NMR of coals:the effects of coal type and rank[J].International Journal of Coal Geology,2004,57(1):1-22. [50] GE Lichao,ZHANG Yanwei,WANG Zhihua,et al.Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals[J].Energy Conversion and Management,2013,71:84-91. |