[1] 高文彬,李宜强,何书梅,等.基于荧光薄片的剩余油赋存形态分类方法[J].石油学报,2020,41(11):1406-1415. GAO Wenbin,LI Yiqiang,HE Shumei,et al.Classification method of occurrence mode of remaining oil based on fluorescence thin sections[J].Acta Petrolei Sinica,2020,41(11):1406-1415 [2] 李志军,肖阳,田建章,等.渤海湾盆地冀中坳陷新领域、新类型油气勘探潜力及有利方向[J].石油学报,2024,45(1):69-98. LI Zhijun,XIAO Yang,TIAN Jianzhang,et al.Potentials and favorable directions for new fields,new types of oil-gas exploration in Jizhong depression,Bohai Bay Basin[J].Acta Petrolei Sinica,2024,45(1):69-98. [3] 李宜强,何书梅,赵子豪,等.基于剩余油动用规律的高含水油藏水驱扩大波及体积方式实验[J].石油学报,2023,44(3):500-509. LI Yiqiang,HE Shumei,ZHAO Zihao,et al.Experiment on enlargement of swept volume by water flooding in high water cut reservoir based on the remaining oil displacement law[J].Acta Petrolei Sinica,2023,44(3):500-509. [4] 孙先达.储层微观剩余油分析技术开发与应用研究[D].长春:吉林大学,2011. SUN Xianda.New technique invention and application of characterizing microscopic remnant oil in reservoirs[D].Changchun:Jilin University,2011. [5] 李忠诚,鲍志东,王洪学,等.基于高压汞灯荧光显微观测的剩余油定量分析方法[J].石油钻探技术,2024,52(3):112-117. LI Zhongcheng,BAO Zhidong,WANG Hongxue,et al.Quantitative analysis method of remaining oil based on fluorescence microscopic observation of high-pressure mercury lamp[J].Petroleum Drilling Techniques,2024,52(3):112-117. [6] 陈浩,滕奇志,何小海,等.基于几何形状特征的剩余油形态识别[J].微型机与应用,2017,36(01):18-21,28. CHEN Hao,TENG Qizhi,HE Xiaohai,et al.Shape recognition of residual oil based on geometry feature[J].Microcomputer & Its Applications,2017,36(1):18-21,28. [7] 程小龙,王正勇,滕奇志.基于KNN的剩余油形态识别[J].信息技术与网络安全,2020,39(1):104-107. CHENG Xiaolong,WANG Zhengyong,TENG Qizhi.K-nearest neighbor method for recognizing the shape of residual oil[J].Information Technology and Network Security,2020,39(1):104-107. [8] 成璐璐.基于机器学习的微观剩余油赋存形态分类识别研究[D].大庆:东北石油大学,2023. CHENG Lulu.Research on the classification and identification of microscopic residual oil reservoir storage based on machine learning[D].Daqing:Northeast Petroleum University,2023. [9] 李望奇,滕奇志,何小海,等.基于深度学习的剩余油形态分类[J].计算机系统应用,2023,32(12):224-232. LI Wangqi,TENG Qizhi,HE Xiaohai,et al.Morphological classification of remaining oil based on deep learning[J].Computer Systems & Applications,2023,32(12):224-232. [10] 刘合,李艳春,贾德利,等.人工智能在注水开发方案精细化调整中的应用现状及展望[J].石油学报,2023,44(9):1574-1586. LIU He,LI Yanchun,JIA Deli,et al.Application status and prospects of artificial intelligence in the refinement of waterflooding development program[J].Acta Petrolei Sinica,2023,44(9):1574-1586. [11] ZOU Xiangxi,ZHANG Yonghui,ZHANG Shuaiyan,et al.FPGA implementation of edge detection for Sobel operator in eight directions[C]// Proceedings of 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).Chengdu:IEEE,2018:520-523. [12] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:transformers for image recognition at scale[C/OL]//Proceedings of the Ninth International Conference on Learning Representations.ICLR,2021.https://arxiv.org/abs/2010.11929. [13] 王然,吴涛,尤新才,等.玛湖凹陷二叠系风城组页岩油储层岩相特征及定量评价[J].石油学报,2023,44(7):1085-1096. WANG Ran,WU Tao,YOU Xincai,et al.Petrographic characteristics and quantitative comprehensive evaluation of shale oil reservoirs in Permian Fengcheng Formation,Mahu sag[J].Acta Petrolei Sinica,2023,44(7):1085-1096. [14] 孙歧峰,李克昊,段友祥,等.基于卷积神经网络与特征聚类的荧光薄片分析方法[J].石油学报,2024,45(3):548-558. SUN Qifeng,LI Kehao,DUAN Youxiang,et al.Fluorescent thin section analysis method based on convolutional neural network and feature clustering[J].Acta Petrolei Sinica,2024,45(3):548-558. [15] 王立辉,夏惠芬,韩培慧,等.剩余油分布的微观特征及其可动用程度的定量表征[J].岩性油气藏,2021,33(2):147-154. WANG Lihui,XIA Huifen,HAN Peihui,et al.Microscopic characteristics of remaining oil distribution and quantitative characterization of its producibility[J].Lithologic Reservoirs,2021,33(2):147-154. [16] 毛国庆,滕奇志,吴拥,等.基于BP神经网络的剩余油形态识别[J].太赫兹科学与电子信息学报,2014,12(6):858-864. MAO Guoqing,TENG Qizhi,WU Yong,et al.Shape recognition of remained oil based on BP neural network[J].Journal of Terahertz Science and Electronic Information Technology,2014,12(6): 858-864. [17] WANG Wenhai,XIE Enze,LI Xiang,et al.Pyramid vision transformer:a versatile backbone for dense prediction without convolutions[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:548-558. [18] ZHAO Lin,SUN Xianda,LIU Fang,et al.Study on morphological identification of tight oil reservoir residual oil after water flooding in secondary oil layers based on convolution neural network[J].Energies,2022,15(15):5367. [19] WEI Zhe,MA Kaikuang.Contrast-guided image interpolation[J].IEEE Transactions on Image Processing,2013,22(11):4271-4285. [20] HAN Kai,WANG Yunhe,TIAN Qi,et al.GhostNet:more features from cheap operations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:1577-1586. [21] MEHTA S,RASTEGARI M.MobileVIT:light-weight,general-purpose,and mobile-friendly vision transformer[C]//Proceedings of the Tenth International Conference on Learning Representations.ICLR,2022. [22] 康宇,郝晓丽.联合判别区域特征的细粒度视觉分类方法[J/OL].计算机工程与应用,1-8[2024-01-29].http://kns.cnki.net/kcms/detail/11.2127.TP.20240129.1011.010.html. KANG Yu,HAO Xiaoli.Fine grained visual classification method for combined discriminative region features[J/OL].Computer Engineering and Applications,1-8[2024-01-29].http://kns.cnki.net/kcms/detail/11.2127.TP.20240129.1011.010.html. [23] TAN Mingxing,LE Q V.EfficientNetv2:Smaller models and faster training[C]//Proceedings of the 38th International Conference on Machine Learning.New York:PMLR,2021:10096-10106. [24] SANDLER M,HOWARD A,ZHU Menglong,et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake Cit:IEEE,2018:4510-4520 [25] HOWARD A,SANDLER M,CHEN Bo,et al.Searching for MobileNetV3[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:1314-1324. [26] MA Ningning,ZHANG Xiangyu,ZHENG Haitao,et al.ShuffleNetV2:Practical guidelines for efficient CNN architecture design[C]//Proceedings of the 15th European Conference on Computer Vision-ECCV 2018.Munich:Springer,2018:122-138. [27] CHEN C F R,FAN Q F,PANDA R.CrossViT:cross-attention multi-scale vision transformer for image classification[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal,QC,Canada.IEEE,2022:347-356. [28] LIU Ze,LIN Yutong,CAO Yue,et al.Swin transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:9992-10002. [29] ZHU Lei,WANG Xinjiang,KE Zhanghan,et al.BiFormer:vision transformer with bi-level routing attention[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver,BC,Canada:IEEE,2023:10323-10333. [30] WU Haiping,XIAO Bin,CODELLA N,et al.CvT:introducing convolutions to vision transformers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal:IEEE,2021:22-31. [31] VASU P K A,GABRIEL J,ZHU J,et al.FastViT:a fast hybrid vision transformer using structural reparameterization[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision.Paris:IEEE,2023:5762-5772. [32] 赵玲.基于数字化孔道的聚驱后微观剩余油定量描述研究[D].大庆:东北石油大学,20119. ZHAO Ling.Study on quantitative description of micro residual oil after polymer flooding based on digital pore and throat[D].Daqing:Northeast Petroleum University,2019. [33] 赖文,蒋璟鑫,邱检生,等.南京大学岩石教学薄片显微图像数据集[DS/OL].科学数据银行,2020(2020-07-28)[2024-05-14].https://cstr.cn/31253.11.sciencedb.j00001.00097. LAI Wen,JIANG Jingxin,QIU Jiansheng,et al.A photomicrograph dataset of rocks for petrology teaching at Nanjing University[DS/OL].V1.Science Data Bank,2020(2020-07-28)[2024-05-14].https://cstr.cn/31253.11.sciencedb.j00001.00097. [34] WAH C,BRANSON S,WELINDER P,et al.CUB-200-2011 (1.0)[DS/OL].CaltechDATA,2012(2022-04-11)[2024-05-14].https://data.caltech.edu/records/65de6-vp158. |