[1] International Energy Agency.Global energy review:CO2 emissions in 2021[R].Paris:IEA,2022. [2] 桑树勋,袁亮,刘世奇,等.碳中和地质技术及其煤炭低碳化应用前瞻[J].煤炭学报,2022,47(4):1430-1451. SANG Shuxun,YUAN Liang,LIU Shiqi,et al.Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J].Journal of China Coal Society,2022,47(4):1430-1451. [3] 王猛,马如英,代旭光,等.煤矿区碳排放的确认和低碳绿色发展途径研究[J].煤田地质与勘探,2021,49(5):63-69. WANG Meng,MA Ruying,DAI Xuguang,et al.Confirmation of carbon emissions in coal mining areas and research on low-carbon green development path[J].Coal Geology & Exploration,2021,49(5):63-69. [4] BACHU S,ADAMS J J.Sequestration of CO2 in geological media in response to climate change:capacity of deep saline aquifers to sequester CO2 in solution[J].Energy Conversion and management,2003,44(20):3151-3175. [5] 张贤,杨晓亮,鲁玺,等.中国二氧化碳捕集利用与封存年度报告(2023)[R].中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023.(2024-03-18).https://file.vogel.com.cn/124/upload/resources/file/421008.pdf. ZHANG Xian,YANG Xiaoliang,LU Xi,et al.Annual report of China carbon capture,utilization and storage (2023)[R].The Administrative Center for China’s Agenda 21,the Global CCS Institute,Tsinghua University,2023.(2024-03-18).https://file.vogel.com.cn/124/upload/resources/file/421008.pdf. [6] 唐书恒,马彩霞,叶建平,等.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报,2006,35(5):607-611. TANG Shuheng,MA Caixia,YE Jianping,et al.A modeling experiment of enhancing coalbed methane recovery by carbon dioxide injection[J].Journal of China University of Mining & Technology,2006,35(5):607-611. [7] 李小春,刘延锋,白冰,等.中国深部咸水含水层CO2储存优先区域选择[J].岩石力学与工程学报,2006,25(5):963-968. LI Xiaochun,LIU Yanfeng,BAI Bing,et al.Ranking and screening of CO2 saline aquifer storage zones in China[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(5):963-968. [8] 刘延锋,李小春,方志明,等.中国天然气田CO2储存容量初步评估[J].岩土力学,2006,27(12):2277-2281. LIU Yanfeng,LI Xiaochun,FANG Zhiming,et al.Preliminary estimation of CO2 storage capacity in gas fields in China[J].Rock and Soil Mechanics,2006,27(12):2277-2281. [9] 张军建,常象春,吕大炜,等.双碳目标下煤层发育区CO2地质封存研究与评价[J].煤炭科学技术,2023,51(增刊1):206-214. ZHANG Junjian,CHANG Xiangchun,LYU Dawei,et al.Carbon dioxide geological storage system in coal seam development area under the premise of double carbon target[J].Coal Science and Technology,2023,51(S1):206-214. [10] BACHU S.Identification of oil reservoirs suitable for CO2-EOR and CO2 storage (CCUS)using reserves databases,with application to Alberta,Canada[J].International Journal of Greenhouse Gas Control,2016,44:152-165. [11] 邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653. ZOU Caineng,DONG Dazhong,WANG Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653. [12] FU Haijiao,YAN Detian,YAO Chenpeng,et al.Pore structure and multi-scale fractal characteristics of adsorbed pores in marine shale:a case study of the Lower Silurian Longmaxi shale in the Sichuan Basin,China[J].Journal of Earth Science,2022,33(5):1278-1290. [13] 朱炎铭,王阳,陈尚斌,等.页岩储层孔隙结构多尺度定性-定量综合表征:以上扬子海相龙马溪组为例[J].地学前缘,2016,23(1): 154-163. ZHU Yanming,WANG Yang,CHEN Shangbin,et al.Qualitative-quantitative multiscale characterization of pore structures in shale reservoirs:a case study of Longmaxi Formation in the Upper Yangtze area[J].Earth Science Frontiers,2016,23(1):154-163. [14] 王海柱,沈忠厚,李根生.超临界CO2开发页岩气技术[J].石油钻探技术,2011,39(3):30-35. WANG Haizhu,SHEN Zhonghou,LI Gensheng.Feasibility analysis on shale gas exploitation with supercritical CO2[J].Petroleum Drilling Techniques,2011,39(3):30-35. [15] 代旭光,王猛,冯光俊,等.超临界CO2-水-页岩作用矿物溶蚀/沉淀特征及其对页岩吸附性的影响[J].煤炭学报,2023,48(7):2813-2826. DAI Xuguang,WANG Meng,FENG Guangjun,et al.Mineralogical erosion and precipitation characteristics and their effects on adsorption property of shale during scCO2-H2O-shale interaction[J].Journal of China Coal Society,2023,48(7):2813-2826. [16] 徐永强,李紫晶,郭冀隆,等.页岩储层-超临界CO2-模拟压裂液相互作用实验研究及其环境意义[J].地学前缘,2018,25(4):245-254. XU Yongqiang,LI Zijing,GUO Jilong,et al.Experimental study on the shale reservoir-supercritical CO2-simulated fracturing fluid interaction and its environmental significance[J].Earth Science Frontiers,2018,25(4):245-254. [17] 王晓琦,翟增强,金旭,等.地层条件下页岩有机质孔隙内CO2与CH4竞争吸附的分子模拟[J].石油勘探与开发,2016,43(5):772-779. WANG Xiaoqi,ZHAI Zengqiang,JIN Xu,et al.Molecular simulation of CO2/CH4 competitive adsorption in organic matter pores in shale under certain geological conditions[J].Petroleum Exploration and Development,2016,43(5):772-779. [18] DASGUPTA N,HO T A,REMPE S B,et al.Hydrophobic nanoconfinement enhances CO2 conversion to H2CO3[J].The Journal of Physical Chemistry Letters,2023,14(6):1693-1701. [19] XU Tianfu,APPS J A,PRUESS K.Mineral sequestration of carbon dioxide in a sandstone-shale system[J].Chemical Geology,2005,217(3/4):295-318. [20] SANGUINITO S,GOODMAN A,TKACH M,et al.Quantifying dry supercritical CO2-induced changes of the Utica Shale[J].Fuel,2018,226:54-64. [21] LIU Faye,LU Peng,GRIFFITH C,et al.CO2-brine-caprock interaction:reactivity experiments on Eau Claire shale and a review of relevant literature[J].International Journal of Greenhouse Gas Control,2012,7:153-167. [22] JIANG Yongdong,LUO Yahuang,LU Yiyu,et al.Effects of supercritical CO2 treatment time,pressure,and temperature on microstructure of shale[J].Energy,2016,97:173-181. [23] GOODMAN A,SANGUINITO S,KUTCHKO B,et al.Shale pore alteration:potential implications for hydrocarbon extraction and CO2 storage [J].Fuel,2020,265:116930. [24] ZHOU Junping,YANG Kang,ZHOU Lei,et al.Microstructure and mechanical properties alterations in shale treated via CO2/CO2-water exposure[J].Journal of Petroleum Science and Engineering,2021,196:108088. [25] 卢义玉,周军平,鲜学福,等.超临界CO2强化页岩气开采及地质封存一体化研究进展与展望[J].天然气工业,2021,41(6):60-73. LU Yiyu,ZHOU Junping,XIAN Xuefu,et al.Research progress and prospect of the integrated supercritical CO2 enhanced shale gas recovery and geological sequestration[J].Natural Gas Industry,2021,41(6):60-73. [26] ALEMU B L,AAGAARD P,MUNZ I A,et al.Caprock interaction with CO2:a laboratory study of reactivity of shale with supercritical CO2 and brine[J].Applied Geochemistry,2011,26(12):1975-1989. [27] NOORAIEPOUR M,FAZELI H,MIRI R,et al.Effect of CO2 phase states and flow rate on salt precipitation in shale caprocks—a microfluidic study[J].Environmental Science & Technology,2018,52(10):6050-6060. [28] 王笑奇.长宁地区五峰—龙马溪组页岩气成藏过程及富集机制研究[D].徐州:中国矿业大学,2021. WANG Xiaoqi.Study on shale gas accumulation process and enrichment mechanism of Wufeng-Longmaxi Formation in Changning area[D].Xuzhou:China University of Mining and Technology,2021. [29] 国家市场监督管理总局,国家标准化管理委员会.沉积岩中总有机碳测定:GB/T 19145—2022[S].北京:中国标准出版社,2022. State Administration of Market Regulation,National Standardization Administration.Determination for total organic carbon in sedimentary rock:GB/T 19145-2022[S].Beijing:Standards Press of China,2022. [30] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.纳米级长度的扫描电镜测量方法通则:GB/T 20307—2006[S].北京:中国标准出版社,2007. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,National Standardization Administration of the People’s Republic of China.General rules for nanometer-scale lengthmeasurement by SEM:GB/T 20307-2006[S].Beijing:Standards Press of China,2007. [31] 国家能源局.沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法:SY/T 5163—2010[S].北京:石油工业出版社,2010. National Energy Administration.Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction:SY/T 5163-2010[S].Beijing:Petroleum Industry Press,2010. [32] 国家标准局.金属材料定量相分析——X射线衍射K值法:GB/T 5225—1985[S].北京:中国标准出版社,1986. National Bureau of Standards.Metal materials—Quantitative phase analysis—"Value K" method of X-ray diffraction:GB/T 5225-1985[S].Beijing:Standards Press of China,1986. [33] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.红外光谱定量分析技术通则:GB/T 32198—2015[S].北京:中国标准出版社,2016. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,National Standardization Administration of the People’s Republic of China.Standard practice for general techniques of infrared quantitative analysis:GB/T 32198-2015[S].Beijing:Standards Press of China,2016. [34] ROUQUEROL J,AVNIR D,FAIRBRIDGE C W,et al.Recommendations for the characterization of porous solids (technical report)[J].Pure and Applied Chemistry,1994,66(8):1739-1758. [35] 国家市场监督管理总局,国家标准化管理委员会.化学试剂 电感耦合等离子体质谱分析方法通则:GB/T 39486—2020[S].北京:中国标准出版社,2020. State Administration of Market Regulation,National Standardization Administration.Chemical reagent—General rules for inductively coupled plasma mass spectrometry:GB/T 39486-2020[S].Beijing:Standards Press of China,2020. [36] POKROVSKY O S,MIELCZARSKI J A,BARRES O,et al.Surface speciation models of calcite and dolomite/aqueous solution interfaces and their spectroscopic evaluation[J].Langmuir,2000,16(6):2677-2688. [37] LAHANN R,MASTALERZ M,RUPP J A,et al.Influence of CO2 on New Albany shale composition and pore structure[J].International Journal of Coal Geology,2013,108:2-9. [38] ROONIZI E K.A new algorithm for fitting a Gaussian function riding on the polynomial background[J].IEEE Signal Processing Letters,2013,20(11):1062-1065. [39] DAI Xuguang,WEI Chongtao,WANG Meng,et al.Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method[J].Energy,2023,264:126424. [40] WANG Xiaoqi,ZHU Yanming,LIU Yu,et al.Molecular structure of kerogen in the longmaxi shale:insights from solid state NMR,FT-IR,XRD and HRTEM[J].Acta Geologica Sinica:English Edition,2019,93(4):1015-1024. [41] YANG Xiangrong,YAN Detian,WEI Xiaosong,et al.Different formation mechanism of quartz in siliceous and argillaceous shales:a case study of Longmaxi Formation in South China[J].Marine and Petroleum Geology,2018,94:80-94. [42] BIBI I,ICENHOWER J,NIAZI N K,et al.Clay minerals:structure,chemistry,and significance in contaminated environments and geological CO2 sequestration[M]//PRASAD M N V,SHIH K.Environmental materials and waste.Amsterdam:Elsevier,2016:543-567. [43] 天津大学无机化学考研室.无机化学[M].北京:高等教育出版社,2010:61-67. Inorganic Chemistry Teaching and Research Office of Tianjin University.Inorganic chemistry[M].Beijing:Higher Education Press,2010:61-67. [44] 魏兵,尚晋,蒲万芬,等.碳酸水-原油体系中CO2分子的扩散行为[J].石油学报,2021,42(1):64-72. WEI Bing,SHANG Jin,PU Wanfen,et al.Diffusion of CO2 molecules in the carbonated water-crude oil system[J].Acta Petrolei Sinica,2021,42(1):64-72. [45] SNÆBJÖRNSDÓTTIR S Ó,SIGFÚSSON B,MARIENI C,et al.Carbon dioxide storage through mineral carbonation[J].Nature Reviews Earth & Environment,2020,1(2):90-102. [46] GÜÇLÜ-ÜSTÜNDAǦ Ö, TEMELLI F.Correlating the solubility behavior of minor lipid components in supercritical carbon dioxide[J].The Journal of Supercritical Fluids,2004,31(3):235-253. [47] 王海柱,李根生,郑永,等.超临界CO2压裂技术现状与展望[J].石油学报,2020,41(1):116-126. WANG Haizhu,LI Gensheng,ZHENG Yong,et al.Research status and prospects of supercritical CO2 fracturing technology[J].Acta Petrolei Sinica,2020,41(1):116-126. [48] 于炳松,李娟,曾秋楠,等.富有机质页岩沉积环境与成岩作用[M].上海:华东理工大学出版社,2016:153-188. YU Bingsong,LI Juan,ZENG Qiunan,et al.Sedimentary environment and diagenesis of organic-rich shale[M].Shanghai:East China University of Science and Technology Press,2016:153-188. [49] 田健.硅酸盐晶体化学[M].武汉:武汉大学出版社,2010:194-199. TIAN Jian.Crystal chemistry of silicate[M].Wuhan:Wuhan University Press,2010:194-199. [50] DAI Xuguang,WEI Chongtao,WANG Meng,et al.Understanding CO2 mineralization and associated storage space changes in illite using molecular dynamics simulation and experiments[J].Energy,2023,283:128467. [51] YU Zhichao,LIU Li,Yang Siyu,et al.An experimental study of CO2-brine-rock interaction at in situ pressure-temperature reservoir conditions[J].Chemical Geology,2012,326-327:88-101. [52] LU Peng,FU Qi,SEYFRIED JR W E,et al.Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems -2:new experiments with supercritical CO2 and implications for carbon sequestration[J].Applied Geochemistry,2013,30:75-90. [53] 李宁,金之钧,张士诚,等.水/超临界二氧化碳作用下的页岩微观力学特性[J].石油勘探与开发,2023,50(4):872-882. LI Ning,JIN Zhijun,ZHANG Shicheng,et al.Micro-mechanical properties of shale due to water/supercritical carbon dioxide-rock interaction[J].Petroleum Exploration and Development,2023,50(4):872-882. [54] 刘世奇,皇凡生,杜瑞斌,等.CO2地质封存与利用示范工程进展及典型案例分析[J].煤田地质与勘探,2023,51(2):158-174. LIU Shiqi,HUANG Fansheng,DU Ruibin,et al.Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J].Coal Geology & Exploration,2023,51(2):158-174. [55] GAT D,RONEN Z,TSESARSKY M.Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media[J].Chemosphere,2017,184:524-531. [56] MADHAV D,BUFFEL B,DESPLENTERE F,et al.Bio-inspired mineralization of CO2 into CaCO3:single-step carbon capture and utilization with controlled crystallization[J].Fuel,2023,345:128157. [57] MURALEEDHARAN M G,HERZ-THYHSEN R,DEWEY J C,et al.Understanding the chemistry of cation leaching in illite/water interfacial system using reactive molecular dynamics simulations and hydrothermal experiments[J].Acta Materialia,2020,186:564-574. [58] 李虹璎,李玉香,易发成.处理后的粘土矿物的阳离子交换容量[J].原子能科学技术,2007,41(4):420-424. LI Hongying,LI Yuxiang,YI Facheng.Cation exchange capacity of treated clay mineral[J].Atomic Energy Science and Technology,2007,41(4):420-424. [59] STIRLING A,PÁPAI I.H2CO3 forms via HCO3- in water[J].The Journal of Physical Chemistry B,2010,114(50):16854-16859. [60] ISMADJI S,SOETAREDJO F E,AYUCITRA A.Natural clay minerals as environmental cleaning agents[M]//ISMADJI S,SOETAREDJO F E,AYUCITRA A.Clay materials for environmental remediation.Cham:Springer,2015:5-37. [61] MUKHERJEE S.The science of clays[M].Dordrecht:Springer,2013:33-44. |