石油学报 ›› 2018, Vol. 39 ›› Issue (4): 445-455.DOI: 10.7623/syxb201804008

• 油田开发 • 上一篇    下一篇

泡沫油型超重油冷采后转SAGD开发数值模拟

杨朝蓬1, 李星民1, 陈和平1, 赵海龙2, 包宇1, 沈杨1, 刘章聪1   

  1. 1. 中国石油勘探开发研究院 北京 100083;
    2. 中国石油大学石油工程学院 山东青岛 266580
  • 收稿日期:2017-04-25 修回日期:2017-09-09 出版日期:2018-04-25 发布日期:2018-05-03
  • 通讯作者: 杨朝蓬,男,1983年9月生,2006年获大庆石油学院学士学位,2013年获中国科学院大学博士学位,现为中国石油勘探开发研究院高级工程师,主要从事油气田开发研究工作。Email:yangzhaopeng@petrochina.com.cn
  • 作者简介:杨朝蓬,男,1983年9月生,2006年获大庆石油学院学士学位,2013年获中国科学院大学博士学位,现为中国石油勘探开发研究院高级工程师,主要从事油气田开发研究工作。Email:yangzhaopeng@petrochina.com.cn
  • 基金资助:

    国家科技重大专项(2016ZX05031-001)资助。

SAGD development numerical simulation of foamy ultra-heavy oil reservoir after cold production

Yang Zhaopeng1, Li Xingmin1, Chen Heping1, Zhao Hailong2, Bao Yu1, Shen Yang1, Liu Zhangcong1   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. School of Petroleum Engineering, China University of Petroleum, Shandong Qingdao 266580, China
  • Received:2017-04-25 Revised:2017-09-09 Online:2018-04-25 Published:2018-05-03

摘要:

泡沫油型超重油油藏原始溶解气油比高,地下可形成泡沫油流,水平井冷采初产较高,但一次衰竭开发采收率低。因此,开展了泡沫油型超重油冷采后转SAGD开发技术研究。根据研究区块油藏地质特征,建立了泡沫油冷采及热采数值模拟模型,研究了泡沫油SAGD驱油机理和开发技术政策。研究结果表明,与油砂SAGD不同,泡沫油具有流动性,泡沫油SAGD驱油机理为在注采井形成热连通之前蒸汽驱油为主、重力泄油为辅,形成热连通后蒸汽驱油为辅、重力泄油为主。泡沫油SAGD启动阶段不需要预热,注采井间垂向井距应适当增大。地层压力下降后油相中析出的溶解气附着在蒸汽腔侧面上影响蒸汽腔的横向扩展。因此,冷采转SAGD时机应尽量延后,当冷采至较低地层压力、溶解气含量大幅降低时转SAGD开发效果更好。由于区块构造具有倾角,生产井水平段井轨迹应保持水平,有利于形成合理的SAGD汽液界面;在满足技术经济条件下,缩小SAGD排距可提高采出程度。提出了提高SAGD开发效果的措施:1采用上下两口水平井冷采,有利于减少溶解气含量,提高SAGD开采效果;2对于多井SAGD,采用(交替)不平衡注汽,可促进蒸汽腔发育,提高采出程度。

关键词: 泡沫油, SAGD, 转注时机, 溶解气, 注采井距, 不平衡注汽

Abstract:

T he foamy ultra-heavy oil reservoirs show high initial dissolved gas-oil ratio, underground foamy oil flow, and high initial oil production rate during the cold production of horizontal well but low primary depletion recovery factor. Thus, a study was conducted on the steam assisted gravity drainage (SAGD)development technology used after the cold production of foamy ultra-heavy oil. The numerical simulation models for the cold and thermal production of foamy oil were established based on reservoir geological characteristics of the study area. Additionally, this study also focused on the oil-flooding mechanism as well as the exploitation technology and tactics of SAGD. The results show that different from oil-sand SAGD, foamy oil has a mobility, and foamy-oil SAGD has the major displacement mechanism dominated by steam flooding and supplemented by gravity drainage before thermal interconnecting, while dominated by gravity drainage and supplemented by steam flooding after thermal interconnecting. At the start of SAGD, no preheating is required, and the vertical spacing between the injection and production wells shall be increased appropriately. With the formation pressure declining, the dissolved gas precipitated from oil phase attaches on the lateral surface of steam chamber and prevents steam chamber from extending horizontally. Therefore, the transition time from cold production to SAGD shall be postponed, and until the dissolved gas content is greatly reduced in case of low formation pressure, the SAGD development effect after cold production will be better. For the block tectonics with a dip, the well track at the horizontal section of production well shall keep horizontal, helpful for forming the reasonable SAGD liquid-vapor interface. Under certain technical economic conditions, reducing the well spacing of SAGD can improve the recovery rate. The technologies for improving SAGD were put forward also. The results show that using the upper and lower two horizontal wells for cold production is favorable to reduce the dissolved gas content and improve the SAGD development effect and adopting the (alternated)unbalanced steam injection for multi-well-pair SAGD is able to promote the development of steam chamber and enhance the recovery.

Key words: foamy oil, steam assisted gravity drainage, transition time, dissolved gas, well spacing for injection and production, unbalanced steam injection

中图分类号: