石油学报 ›› 2022, Vol. 43 ›› Issue (1): 91-100.DOI: 10.7623/syxb202201008
孙金声1,2, 刘凡1, 程荣超1, 冯杰1, 郝惠军1, 王韧1, 白英睿2, 刘钦政3
收稿日期:
2021-07-29
修回日期:
2021-11-04
出版日期:
2022-01-25
发布日期:
2022-02-10
通讯作者:
孙金声,男,1965年1月生,2006年获西南石油大学博士学位,现为中国工程院院士、中国石油集团工程技术研究院有限公司总工程师、中国石油大学(华东)博士生导师,主要从事钻井液、储层保护、天然气水合物开采理论与技术等研究工作。
作者简介:
孙金声,男,1965年1月生,2006年获西南石油大学博士学位,现为中国工程院院士、中国石油集团工程技术研究院有限公司总工程师、中国石油大学(华东)博士生导师,主要从事钻井液、储层保护、天然气水合物开采理论与技术等研究工作。Email:sunjsdri@cnpc.com.cn
基金资助:
Sun Jinsheng1,2, Liu Fan1, Cheng Rongchao1, Feng Jie1, Hao Huijun1, Wang Ren1, Bai Yingrui2, Liu Qinzheng3
Received:
2021-07-29
Revised:
2021-11-04
Online:
2022-01-25
Published:
2022-02-10
摘要: 随着大数据和人工智能技术在油气勘探开发领域应用不断拓展,数字化、智能化防漏堵漏技术已成为必然发展趋势,基于机器学习的算法模型及配套软件是核心内容。通过系统归纳分析了人工神经网络、支持向量机、随机森林、案例推理等机器算法在井漏特征预测、井漏实时监测和应用决策模型的应用现状,对比了各类机器学习算法的输入参数、输出参数、测试准确率及应用效果。机器学习算法在漏失层位预测、井漏监测预警及防漏堵漏措施推荐等方面体现了良好的应用前景,相比人工统计分析,其时效性、准确性和规模化应用优势明显,但还无法科学预测计算漏失压力、孔缝尺寸等井漏特征关键参数以及优化施工工艺。国外油气公司数字化钻完井技术布局早,现已整合多种机器学习算法开发了防漏堵漏相关软件,并在现场取得了一定应用成效。中国井漏相关数据治理、机器学习算法开发及配套软件攻关研究起步较晚,尚未建立成熟可靠的防漏堵漏数字化平台和智能化专家系统。为加快中国防漏堵漏技术数字化、智能化转型发展,需重点开展3方面研究:①推进井漏相关的多维度数据整合,搭建包括地震、测井、录井、钻井、防漏堵漏室内评价、防漏堵漏现场施工等方面的数据湖,补齐数据短板;②加强机器学习算法模型的解释性研究,结合井漏相关机理,提升算法模型的科学性和准确性;③集成井漏数据湖和算法模块,分区域建立井漏智能预测预警及防漏堵漏辅助决策专家系统,制定精细的防漏堵漏作业标准,全面提高一次防漏堵漏成功率。
中图分类号:
孙金声, 刘凡, 程荣超, 冯杰, 郝惠军, 王韧, 白英睿, 刘钦政. 机器学习在防漏堵漏中研究进展与展望[J]. 石油学报, 2022, 43(1): 91-100.
Sun Jinsheng, Liu Fan, Cheng Rongchao, Feng Jie, Hao Huijun, Wang Ren, Bai Yingrui, Liu Qinzheng. Research progress and prospects of machine learning in lost circulation control[J]. Acta Petrolei Sinica, 2022, 43(1): 91-100.
[1] 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J].石油勘探与开发, 2021, 48(3):630-638. SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al.Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J].Petroleum Exploration and Development, 2021, 48(3):630-638. [2] ARSHAD U, JAIN B, RAMZAN M, et al.Engineered solution to reduce the impact of lost circulation during drilling and cementing in Rumaila Field, Iraq[R].IPTC 18245, 2015. [3] 李伟, 白英睿, 李雨桐, 等.钻井液堵漏材料研究及应用现状与堵漏技术对策[J].科学技术与工程, 2021, 21(12):4733-4743. LI Wei, BAI Yingrui, LI Yutong, et al.Research and application progress of drilling fluid lost circulation materials and technical countermeasures for lost circulation control[J].Science Technology and Engineering, 2021, 21(12):4733-4743. [4] 暴丹, 邱正松, 叶链, 等.热致形状记忆""智能""型堵漏剂的制备与特性实验[J].石油学报, 2020, 41(1):106-115. BAO Dan, QIU Zhengsong, YE Lian, et al.Preparation and characteristic experiments of intelligent lost circulation materials based on thermally shape memory polymer[J].Acta Petrolei Sinica, 2020, 41(1):106-115. [5] ALKINANI H H, AL-HAMEEDI A T, DUNN-NORMAN S, et al.Applications of artificial neural networks in the petroleum industry:a review[R].SPE 195072, 2019. [6] 匡立春, 刘合, 任义丽, 等.人工智能在石油勘探开发领域的应用现状与发展趋势[J].石油勘探与开发, 2021, 48(1):1-11. KUANG Lichun, LIU He, REN Yili, et al.Application and development trend of artificial intelligence in petroleum exploration and development[J].Petroleum Exploration and Development, 2021, 48(1):1-11. [7] 杨平, 詹仕凡, 李明, 等.基于梦想云的人工智能地震解释模式研究与实践[J].中国石油勘探, 2020, 25(5):89-96. YANG Ping, ZHAN Shifan, LI Ming, et al.Research and practice on artificial intelligence seismic interpretation mode based on E & P Dream Cloud[J].China Petroleum Exploration, 2020, 25(5):89-96. [8] 赵邦六, 雍学善, 高建虎, 等.中国石油智能地震处理解释技术进展与发展方向思考[J].中国石油勘探, 2021, 26(5):12-23. ZHAO Bangliu, YONG Xueshan, GAO Jianhu, et al.Progress and development direction of PetroChina intelligent seismic processing and interpretation technology[J].China Petroleum Exploration, 2021, 26(5):12-23. [9] 李宁, 徐彬森, 武宏亮, 等.人工智能在测井地层评价中的应用现状及前景[J].石油学报, 2021, 42(4):508-522. LI Ning, XU Binsen, WU Hongliang, et al.Application status and prospects of artificial intelligence in well logging and formation evaluation[J].Acta Petrolei Sinica, 2021, 42(4):508-522. [10] 赵丽莎, 史永彬, 金玮, 等.基于梦想云的测井智能化解释应用研究[J].中国石油勘探, 2020, 25(5):97-103. ZHAO Lisha, SHI Yongbin, JIN Wei, et al.Application research on intelligent logging interpretation based on E & P Dream Cloud[J].China Petroleum Exploration, 2020, 25(5):97-103. [11] 杨传书, 李昌盛, 孙旭东, 等.人工智能钻井技术研究方法及其实践[J].石油钻探技术, 2021, 49(5):7-13. YANG Chuanshu, LI Changsheng, SUN Xudong, et al.Research method and practice of artificial intelligence drilling technology[J].Petroleum Drilling Techniques, 2021, 49(5):7-13. [12] 王敏生, 光新军.智能钻井技术现状与发展方向[J].石油学报, 2020, 41(4):505-512. WANG Minsheng, GUANG Xinjun.Status and development trends of intelligent drilling technology[J].Acta Petrolei Sinica, 2020, 41(4):505-512. [13] 李道伦, 刘旭亮, 查文舒, 等.基于卷积神经网络的径向复合油藏自动试井解释方法[J].石油勘探与开发, 2020, 47(3):583-591. LI Daolun, LIU Xuliang, ZHA Wenshu, et al.Automatic well test interpretation based on convolutional neural network for a radial composite reservoir[J].Petroleum Exploration and Development, 2020, 47(3):583-591. [14] 李阳, 廉培庆, 薛兆杰, 等.大数据及人工智能在油气田开发中的应用现状及展望[J].中国石油大学学报:自然科学版, 2020, 44(4):1-11. LI Yang, LIAN Peiqing, XUE Zhaojie, et al.Application status and prospect of big data and artificial intelligence in oil and gas field development[J].Journal of China University of Petroleum:Edition of Natural Science, 2020, 44(4):1-11. [15] MOHAN R, HUSSEIN A, MAWLOD A, et al.Data driven and ai methods to enhance collaborative well planning and drilling risk prediction[R].SPE 203073, 2020. [16] LIND Y B, KABIROVA A R.Artificial neural networks in drilling troubles prediction[R].SPE 171274, 2014. [17] KRISHNA S, RIDHA S, VASANT P, et al.Conventional and intelligent models for detection and prediction of fluid loss events during drilling operations:a comprehensive review[J].Journal of Petroleum Science and Engineering, 2020, 195:107818. [18] 徐同台, 刘玉杰.钻井工程防漏堵漏技术[M].北京:石油工业出版社, 1997. XU Tongtai, LIU Yujie.Leakage prevention and plugging technology in drilling engineering[M].Beijing:Petroleum Industry Press, 1997. [19] 张磊, 王晓鹏, 谢涛, 等.天然裂缝性地层漏失压力预测新模型[J].钻采工艺, 2018, 41(5):19-22. ZHANG Lei, WANG Xiaopeng, XIE Tao, et al.A New Leakage pressure prediction model for natural fractured formation[J].Drilling & Production Technology, 2018, 41(5):19-22. [20] MORITA N, BLACK A D, GUH G F.Theory of lost circulation pressure[R].SPE 20409, 1990. [21] 苏皓, 雷征东, 李俊超, 等.储集层多尺度裂缝高效数值模拟模型[J].石油学报, 2019, 40(5):587-593. SU Hao, LEI Zhengdong, LI Junchao, et al.An effective numerical simulation model of multi-scale fractures in reservoir[J].Acta Petrolei Sinica, 2019, 40(5):587-593. [22] 蒋裕强, 刘雄伟, 付永红, 等.渝西地区海相页岩储层孔隙有效性评价[J].石油学报, 2019, 40(10):1233-1243. JIANG Yuqiang, LIU Xiongwei, FU Yonghong, et al.Evaluation of effective porosity in marine shale reservoir, western Chongqing[J].Acta Petrolei Sinica, 2019, 40(10):1233-1243. [23] 杨午阳, 杨佳润, 陈双全, 等.基于U-Net深度学习网络的地震数据断层检测[J].石油地球物理勘探, 2021, 56(4):688-697. YANG Wuyang, YANG Jiarun, CHEN Shuangquan, et al.Seismic data fault detection based on U-Net deep learning network[J].Oil Geophysical Prospecting, 2021, 56(4):688-697. [24] 牟丹, 张丽春, 徐长玲.3种经典机器学习算法在火山岩测井岩性识别中的对比[J].吉林大学学报:地球科学版, 2021, 51(3):951-956. MOU Dan, ZHANG Lichun, XU Changling.Comparison of three classical machine learning algorithms for lithology identification of volcanic rocks using well logging data[J].Journal of Jilin University:Earth Science Edition, 2021, 51(3):951-956. [25] 谷宇峰, 张道勇, 鲍志东, 等.利用梯度提升决策树(GBDT) 预测渗透率——以姬塬油田西部长4+5段致密砂岩储层为例[J].地球物理学进展, 2021, 36(2):585-594. GU Yufeng, ZHANG Daoyong, BAO Zhidong, et al.Permeability prediction using Gradient Boosting Decision Tree (GBDT):a case study of tight sandstone reservoirs of member of Chang 4+5 in western Jiyuan oilfield[J].Progress in Geophysics, 2021, 36(2):585-594. [26] 陈桂, 刘洋.基于人工智能的断层自动识别研究进展[J].地球物理学进展, 2021, 36(1):119-131. CHEN Gui, LIU Yang.Research progress of automatic fault recognition based on artificial intelligence[J].Progress in Geophysics, 2021, 36(1):119-131. [27] 邹文波.人工智能研究现状及其在测井领域的应用[J].测井技术, 2020, 44(4):323-328. ZOU Wenbo.Artificial intelligence research status and applications in well logging[J].Well Logging Technology, 2020, 44(4):323-328. [28] GENG Zhi, WANG Hanqing, FAN Meng, et al.Predicting seismic-based risk of lost circulation using machine learning[J].Journal of Petroleum Science and Engineering, 2019, 176:679-688. [29] 王建君, 李井亮, 李林, 等.基于叠后地震数据的裂缝预测与建模——以太阳-大寨地区浅层页岩气储层为例[J].岩性油气藏, 2020, 32(5):122-132. WANG Jianjun, LI Jingliang, LI Lin, et al.Fracture prediction and modeling based on poststack 3D seismic data:a case study of shallow shale gas reservoir in Taiyang-Dazhai area[J].Lithologic Reservoirs, 2020, 32(5):122-132. [30] 卢志远, 张晓黎, 张万龙, 等.一种地震裂缝预测与岩石力学相结合评估井漏风险的新方法——以准噶尔盆地玛湖油田A井区为例[J].天然气地球科学, 2020, 31(10):1453-1465. LU Zhiyuan, ZHANG Xiaoli, ZHANG Wanlong, et al.A new method of leakage risk evaluation based on seismic fracture prediction and rock mechanics:case study in a wellblock of Mahu oilfield in Junggar Basin[J].Natural Gas Geoscience, 2020, 31(10):1453-1465. [31] 张吉昌, 邢玉忠, 郑丽辉.利用人工智能技术进行裂缝识别研究[J].测井技术, 2005, 29(1):52-54. ZHANG Jichang, XING Yuzhong, ZHENG Lihui.Using artificial intelligent technique to identify fractures[J].Well Logging Technology, 2005, 29(1):52-54. [32] 申辉林, 高松洋.基于BP神经网络进行裂缝识别研究[J].新疆石油天然气, 2006, 2(4):39-42. SHEN Huilin, GAO Songyang.Fractures identification based on BP neural network[J].Xinjiang Oil & Gas, 2006, 2(4):39-42. [33] JIANG Jiajun, XU Rui, JAMES S C, et al.Deep-learning-based vuggy facies identification from borehole images[J].SPE Reservoir Evaluation & Engineering, 2021, 24(1):250-261. [34] TRAN N L, GUPTA I, DEVEGOWDA D, et al.Application of interpretable machine-learning workflows to identify brittle, fracturable, and producible rock in horizontal wells using surface drilling data[J].SPE Reservoir Evaluation & Engineering, 2020, 23(4):1328-1342. [35] LI Zejun, CHEN Mian, JIN Yan, et al.Study on intelligent prediction for risk level of lost circulation while drilling based on machine learning[R].ARMA 2018-105, 2018. [36] 何涛, 谢显涛, 王君, 等.利用优化BP神经网络建立裂缝宽度预测模型[J].钻井液与完井液, 2021, 38(2):201-206. HE Tao, XIE Xiantao, WANG Jun, et al.Crack width prediction model based on optimized BP neural network[J].Drilling Fluid & Completion Fluid, 2021, 38(2):201-206. [37] FENG Yongcun, JONES J F, GRAY K E.A review on fracture-initiation and -propagation pressures for lost circulation and wellbore strengthening[J].SPE Drilling & Completion, 2016, 31(2):134-144. [38] YIN Qishuai, YANG Jin, LIU Shujie, et al.Intelligent method of identifying drilling risk in complex formations based on drilled wells data[R].SPE 187472, 2017. [39] AHMED S A, MAHMOUD A A, ELKATATNY S, et al.Prediction of pore and fracture pressures using support vector machine[R].IPTC 19523, 2019. [40] YU Hao, CHEN Guoxiong, GU Hanming.A machine learning methodology for multivariate pore-pressure prediction[J].Computers & Geosciences, 2020, 143:104548. [41] BOONCHAROEN P, RINSIRI T, PAIBOON P, et al.Pore pressure estimation by using machine learning model[R].IPTC 21490, 2021. [42] ALKINANI H H, AL-HAMEEDI A T, DUNN-NORMAN S, et al.Data-driven neural network model to predict equivalent circulation density ECD[R].SPE 198612, 2019. [43] HAN Chao, GUAN Zhichuan, LI Jingjiao, et al.Equivalent circulating density prediction using a hybrid arima and BP neural network model[R].SPE 197495, 2019. [44] ALKINANI H H, AL-HAMEEDI A T, DUNN-NORMAN S, et al.Prediction of lost circulation prior to drilling for induced fractures formations using artificial neural networks[R].SPE 195197, 2019. [45] ALKINANI H H, AL-HAMEEDI A T, DUNN-NORMAN S, et al.Minimizing lost circulation non-productive time for naturally fractured formations[R].ARMA 2019-0513, 2019. [46] JAHANBAKHSHI R, KESHAVARZI R, JALILI S.Artificial neural network-based prediction and geomechanical analysis of lost circulation in naturally fractured reservoirs:a case study[J].European Journal of Environmental and Civil Engineering, 2014, 18(3):320-335. [47] AL-HAMEEDI A T, ALKINANI H H, DUNN-NORMAN S, et al.Using machine learning to predict lost circulation in the Rumaila field, Iraq[R].SPE 191933, 2018. [48] HOU Xinxin, YANG Jin, YIN Qishuai, et al.Lost circulation prediction in south china sea using machine learning and big data technology[R].OTC 30653 2020. [49] 翟晓鹏, 鞠鹏飞, 谢志涛, 等.页岩诱导性裂缝漏失压力动力学模型[J].天然气工业, 2018, 38(3):81-86. ZHAI Xiaopeng, JU Pengfei, XIE Zhitao, et al.A dynamic model for the leakage pressure of induced fractures in shale reservoirs[J].Natural Gas Industry, 2018, 38(3):81-86. [50] 邸士莹, 程时清, 白文鹏, 等.致密油藏动态裂缝扩展机理及应用[J].力学学报, 2021, 53(8):2141-2155. DI Shiying, CHENG Shiqing, BAI Wenpeng, et al.Dynamic fracture propagation mechanism and application in tight oil reservoir[J].Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8):2141-2155. [51] 李大奇, 康毅力, 刘修善, 等.基于漏失机理的碳酸盐岩地层漏失压力模型[J].石油学报, 2011, 32(5):900-904. LI Daqi, KANG Yili, LIU Xiushan, et al.The lost circulation pressure of carbonate formations on the basis of leakage mechanisms[J].Acta Petrolei Sinica, 2011, 32(5):900-904. [52] 涂曦予, 于露, 耿子辰, 等.基于大规模时间序列的井漏事故预警方法[J].信息技术, 2018, 42(12):1-4. TU Xiyu, YU Lu, GENG Zichen, et al.Research on intelligent warning of loss circulation based on large-scale time series data[J].Information Technology, 2018, 42(12):1-4. [53] 谢平, 蒋丽雯, 赵尧, 等.基于神经网络的井涌井漏实时预测方法研究[J].现代计算机, 2018(11):23-28. XIE Ping, JIANG Liwen, ZHAO Yao, et al.Research on real-time prediction and analysis based on neural network for well kick and lost circulation[J].Modern Computer, 2018(11):23-28. [54] 史肖燕, 周英操, 赵莉萍, 等.基于随机森林的溢漏实时判断方法研究[J].钻采工艺, 2020, 43(1):9-12. SHI Xiaoyan, ZHOU Yingcao, ZHAO Liping, et al.Losses in real time on basis of random forest method[J].Drilling & Production Technology, 2020, 43(1):9-12. [55] UNRAU S, TORRIONE P.Adaptive real-time machine learning-based alarm system for influx and loss detection[R].SPE 187155, 2017. [56] ANDIA P, SANT R V, WHITELEY N.A comprehensive real-time data analysis tool for fluid gains and losses[R].SPE 189576, 2018. [57] 马涛, 张仲宏, 王铁成, 等.勘探开发梦想云平台架构设计与实现[J].中国石油勘探, 2020, 25(5):71-81. MA Tao, ZHANG Zhonghong, WANG Tiecheng, et al.Architecture design and implementation of E & P Dream Cloud platform[J].China Petroleum Exploration, 2020, 25(5):71-81. [58] 李剑峰.智慧石化建设:从信息化到智能化[J].石油科技论坛, 2020, 39(1):34-42. LI Jianfeng.Construction of intelligent petrochemical industry:from information to intelligence[J].Petroleum Science and Technology Forum, 2020, 39(1):34-42. [59] 张志磊, 胡百中, 卞维坤, 等.昭通页岩气示范区井漏防治技术与实践[J].钻井液与完井液, 2020, 37(1):38-45. ZHANG Zhilei, HU Baizhong, BIAN Weikun, et al.Mud loss control techniques and practices in Zhaotong demonstration zone of shale gas drilling[J].Drilling Fluid & Completion Fluid, 2020, 37(1):38-45. [60] 李宁, 张震, 程荣超, 等.库车山前堵漏材料关键性能参数及评价方法研究[J].内蒙古石油化工, 2020, 46(8):6-10. LI Ning, ZHANG Zhen, CHENG Rongchao, et al.Research on key performance parameters and evaluation methods of lost circulation materials in Kuqa piedmont[J].Inner Mongolia Petrochemical Industry, 2020, 46(8):6-10. [61] 王涛, 刘锋报, 罗威, 等.塔里木油田防漏堵漏技术进展与发展建议[J].石油钻探技术, 2021, 49(1):28-33. WANG Tao, LIU Fengbao, LUO Wei, et al.The technical advance and development suggestions for leakage prevention and plugging technologies in the Tarim oilfield[J].Petroleum Drilling Techniques, 2021, 49(1):28-33. [62] 张学洪, 李黔.基于案例推理的井漏风险预警方法[J].断块油气田, 2017, 24(2):255-258. ZHANG Xuehong, LI Qian.Risk pre-warning method of well leakage based on case reasoning[J].Fault-Block Oil and Gas Field, 2017, 24(2):255-258. [63] 尹虎, 王海彪.基于CBR的井漏复杂事故的智能预警方法研究[J].科技通报, 2018, 34(4):195-199. YIN Hu, WANG Haibiao.Intelligent research of complex loss circulation' warning based on CBR[J].Bulletin of Science and Technology, 2018, 34(4):195-199. [64] REEDY K, POPA A S, CASSIDY S D.Remediation solutions for lost circulation using case based reasoning[R].SPE 190066, 2018. [65] ALKINANI H H, AL-HAMEEDI A T T, DUNN-NORMAN S.Minimizing lost circulation non-productive time using expected monetary value and decision tree analysis[R].SPE 200844, 2021. [66] ABBAS A K, HAMED H M, AL-BAZZAZ W, et al.Predicting the amount of lost circulation while drilling using artificial neural networks:an example of southern Iraq oil fields[R].SPE 198617, 2019. [67] ABBAS A K, BASHIKH A A, ABBAS H, et al.Intelligent decisions to stop or mitigate lost circulation based on machine learning[J].Energy, 2019, 183:1104-1113. [68] IZYUROV V, KHARITONOV A, SEMENIKHIN I, et al.Selecting bridging agents' particle size distribution for optimum plugging while drilling in permeable zones[R].SPE 197009, 2019. [69] 蒋官澄, 毛蕴才, 周宝义, 等.暂堵型保护油气层钻井液技术研究进展与发展趋势[J].钻井液与完井液, 2018, 35(2):1-16. JIANG Guancheng, MAO Yuncai, ZHOU Baoyi, et al.Progress made and trend of development in studying on temporarily type plugging reservoir protection drilling fluids[J].Drilling Fluid & Completion Fluid, 2018, 35(2):1-16. [70] 张世锋, 王相, 崔新颖, 等.基于改进理想充填理论的堵漏颗粒粒度分布设计方法[J].常州大学学报:自然科学版, 2021, 33(3):54-59. ZHANG Shifeng, WANG Xiang, CUI Xinying, et al.Modified ideal packing theory to optimize size distribution of plugging particle for fracture lost circulation control[J].Journal of Changzhou University:Natural Science Edition, 2021, 33(3):54-59. [71] 康毅力, 王凯成, 许成元, 等.深井超深井钻井堵漏材料高温老化性能评价[J].石油学报, 2019, 40(2):215-223. KANG Yili, WANG Kaicheng, XU Chengyuan, et al.High-temperature aging property evaluation of lost circulation materials in deep and ultra-deep well drilling[J].Acta Petrolei Sinica, 2019, 40(2):215-223. [72] 暴丹, 邱正松, 邱维清, 等.高温地层钻井堵漏材料特性实验[J].石油学报, 2019, 40(7):846-857. BAO Dan, QIU Zhengsong, QIU Weiqing, et al.Experiment on properties of lost circulation materials in high temperature formation[J].Acta Petrolei Sinica, 2019, 40(7):846-857. [73] 熊战, 李立昌, 王学龙, 等.理想充填堵漏工艺在温储6井的应用[J].钻井液与完井液, 2020, 37(4):465-468. XIONG Zhan, LI Lichang, WANG Xuelong, et al.Lost circulation control with idea packing on well Wenchu-6[J].Drilling Fluid & Completion Fluid, 2020, 37(4):465-468. [74] 贾承造.中国石油工业上游发展面临的挑战与未来科技攻关方向[J].石油学报, 2020, 41(12):1445-1464. JIA Chengzao.Development challenges and future scientific and technological researches in China's petroleum industry upstream[J].Acta Petrolei Sinica, 2020, 41(12):1445-1464. |
[1] | 刘合, 李艳春, 贾德利, 王素玲, 乔美霞, 屈如意, 温鹏云, 任智慧. 人工智能在注水开发方案精细化调整中的应用现状及展望[J]. 石油学报, 2023, 44(9): 1574-1586. |
[2] | 刘喜武, 王心宇, 刘宇巍, 张金强, 刘炯, 刘倩. 中国陆相页岩油地震勘探技术现状及发展方向[J]. 石油学报, 2023, 44(12): 2270-2285. |
[3] | 刘文岭, 韩大匡. 数字孪生油气藏:智慧油气田建设的新方向[J]. 石油学报, 2022, 43(10): 1450-1461. |
[4] | 闫霄鹏, 许成元, 康毅力, 商翔宇, 经浩然, 林冲, 张敬逸. 基于力链网络表征的裂缝封堵层结构失稳细观力学机制[J]. 石油学报, 2021, 42(6): 765-775. |
[5] | 李宁, 徐彬森, 武宏亮, 冯周, 李雨生, 王克文, 刘鹏. 人工智能在测井地层评价中的应用现状及前景[J]. 石油学报, 2021, 42(4): 508-522. |
[6] | 孙金声, 雷少飞, 白英睿, 吕开河, 张曙沛, 韩金良, 程荣超, 刘凡. 高分子材料的力学状态转变机理及在钻井液领域的应用展望[J]. 石油学报, 2021, 42(10): 1382-1394. |
[7] | 王敏生, 光新军. 智能钻井技术现状与发展方向[J]. 石油学报, 2020, 41(4): 505-512. |
[8] | 孙金声, 赵震, 白英睿, 吕开河, 王金堂, 王韧, 王晨烨, 戴立瑶. 智能自愈合凝胶研究进展及在钻井液领域的应用前景[J]. 石油学报, 2020, 41(12): 1706-1718. |
[9] | 暴丹, 邱正松, 叶链, 钟汉毅, 赵欣, 邱维清, 王宝田, 郭保雨. 热致形状记忆“智能”型堵漏剂的制备与特性实验[J]. 石油学报, 2020, 41(1): 106-115. |
[10] | 暴丹, 邱正松, 邱维清, 王宝田, 郭保雨, 王旭东, 刘均一, 陈家旭. 高温地层钻井堵漏材料特性实验[J]. 石油学报, 2019, 40(7): 846-857. |
[11] | 邱正松, 暴丹, 刘均一, 陈家旭, 钟汉毅, 赵欣, 陈晓华. 裂缝封堵失稳微观机理及致密承压封堵实验[J]. 石油学报, 2018, 39(5): 587-596. |
[12] | 邱正松, 刘均一, 周宝义, 暴丹, 窦同伟, 肖成才. 钻井液致密承压封堵裂缝机理与优化设计[J]. 石油学报, 2016, 37(S2): 137-143. |
[13] | 李大奇 康毅力 刘修善 曾义金 杜春朝. 基于漏失机理的碳酸盐岩地层漏失压力模型[J]. 石油学报, 2011, 32(5): 900-904. |
[14] | 吕开河, 邱正松, 魏慧明, 李先锋, 宋元森. 自适应防漏堵漏钻井液技术研究[J]. 石油学报, 2008, 29(5): 757-760,765. |
[15] | 王以法. 新型智能钻头的设计[J]. 石油学报, 2003, 24(1): 92-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1