Acta Petrolei Sinica ›› 2022, Vol. 43 ›› Issue (1): 91-100.DOI: 10.7623/syxb202201008
Previous Articles Next Articles
Sun Jinsheng1,2, Liu Fan1, Cheng Rongchao1, Feng Jie1, Hao Huijun1, Wang Ren1, Bai Yingrui2, Liu Qinzheng3
Received:
2021-07-29
Revised:
2021-11-04
Online:
2022-01-25
Published:
2022-02-10
孙金声1,2, 刘凡1, 程荣超1, 冯杰1, 郝惠军1, 王韧1, 白英睿2, 刘钦政3
通讯作者:
孙金声,男,1965年1月生,2006年获西南石油大学博士学位,现为中国工程院院士、中国石油集团工程技术研究院有限公司总工程师、中国石油大学(华东)博士生导师,主要从事钻井液、储层保护、天然气水合物开采理论与技术等研究工作。
作者简介:
孙金声,男,1965年1月生,2006年获西南石油大学博士学位,现为中国工程院院士、中国石油集团工程技术研究院有限公司总工程师、中国石油大学(华东)博士生导师,主要从事钻井液、储层保护、天然气水合物开采理论与技术等研究工作。Email:sunjsdri@cnpc.com.cn
基金资助:
CLC Number:
Sun Jinsheng, Liu Fan, Cheng Rongchao, Feng Jie, Hao Huijun, Wang Ren, Bai Yingrui, Liu Qinzheng. Research progress and prospects of machine learning in lost circulation control[J]. Acta Petrolei Sinica, 2022, 43(1): 91-100.
孙金声, 刘凡, 程荣超, 冯杰, 郝惠军, 王韧, 白英睿, 刘钦政. 机器学习在防漏堵漏中研究进展与展望[J]. 石油学报, 2022, 43(1): 91-100.
Add to citation manager EndNote|Ris|BibTeX
[1] 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J].石油勘探与开发, 2021, 48(3):630-638. SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al.Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J].Petroleum Exploration and Development, 2021, 48(3):630-638. [2] ARSHAD U, JAIN B, RAMZAN M, et al.Engineered solution to reduce the impact of lost circulation during drilling and cementing in Rumaila Field, Iraq[R].IPTC 18245, 2015. [3] 李伟, 白英睿, 李雨桐, 等.钻井液堵漏材料研究及应用现状与堵漏技术对策[J].科学技术与工程, 2021, 21(12):4733-4743. LI Wei, BAI Yingrui, LI Yutong, et al.Research and application progress of drilling fluid lost circulation materials and technical countermeasures for lost circulation control[J].Science Technology and Engineering, 2021, 21(12):4733-4743. [4] 暴丹, 邱正松, 叶链, 等.热致形状记忆""智能""型堵漏剂的制备与特性实验[J].石油学报, 2020, 41(1):106-115. BAO Dan, QIU Zhengsong, YE Lian, et al.Preparation and characteristic experiments of intelligent lost circulation materials based on thermally shape memory polymer[J].Acta Petrolei Sinica, 2020, 41(1):106-115. [5] ALKINANI H H, AL-HAMEEDI A T, DUNN-NORMAN S, et al.Applications of artificial neural networks in the petroleum industry:a review[R].SPE 195072, 2019. [6] 匡立春, 刘合, 任义丽, 等.人工智能在石油勘探开发领域的应用现状与发展趋势[J].石油勘探与开发, 2021, 48(1):1-11. KUANG Lichun, LIU He, REN Yili, et al.Application and development trend of artificial intelligence in petroleum exploration and development[J].Petroleum Exploration and Development, 2021, 48(1):1-11. [7] 杨平, 詹仕凡, 李明, 等.基于梦想云的人工智能地震解释模式研究与实践[J].中国石油勘探, 2020, 25(5):89-96. YANG Ping, ZHAN Shifan, LI Ming, et al.Research and practice on artificial intelligence seismic interpretation mode based on E & P Dream Cloud[J].China Petroleum Exploration, 2020, 25(5):89-96. [8] 赵邦六, 雍学善, 高建虎, 等.中国石油智能地震处理解释技术进展与发展方向思考[J].中国石油勘探, 2021, 26(5):12-23. ZHAO Bangliu, YONG Xueshan, GAO Jianhu, et al.Progress and development direction of PetroChina intelligent seismic processing and interpretation technology[J].China Petroleum Exploration, 2021, 26(5):12-23. [9] 李宁, 徐彬森, 武宏亮, 等.人工智能在测井地层评价中的应用现状及前景[J].石油学报, 2021, 42(4):508-522. LI Ning, XU Binsen, WU Hongliang, et al.Application status and prospects of artificial intelligence in well logging and formation evaluation[J].Acta Petrolei Sinica, 2021, 42(4):508-522. [10] 赵丽莎, 史永彬, 金玮, 等.基于梦想云的测井智能化解释应用研究[J].中国石油勘探, 2020, 25(5):97-103. ZHAO Lisha, SHI Yongbin, JIN Wei, et al.Application research on intelligent logging interpretation based on E & P Dream Cloud[J].China Petroleum Exploration, 2020, 25(5):97-103. [11] 杨传书, 李昌盛, 孙旭东, 等.人工智能钻井技术研究方法及其实践[J].石油钻探技术, 2021, 49(5):7-13. YANG Chuanshu, LI Changsheng, SUN Xudong, et al.Research method and practice of artificial intelligence drilling technology[J].Petroleum Drilling Techniques, 2021, 49(5):7-13. [12] 王敏生, 光新军.智能钻井技术现状与发展方向[J].石油学报, 2020, 41(4):505-512. WANG Minsheng, GUANG Xinjun.Status and development trends of intelligent drilling technology[J].Acta Petrolei Sinica, 2020, 41(4):505-512. [13] 李道伦, 刘旭亮, 查文舒, 等.基于卷积神经网络的径向复合油藏自动试井解释方法[J].石油勘探与开发, 2020, 47(3):583-591. LI Daolun, LIU Xuliang, ZHA Wenshu, et al.Automatic well test interpretation based on convolutional neural network for a radial composite reservoir[J].Petroleum Exploration and Development, 2020, 47(3):583-591. [14] 李阳, 廉培庆, 薛兆杰, 等.大数据及人工智能在油气田开发中的应用现状及展望[J].中国石油大学学报:自然科学版, 2020, 44(4):1-11. LI Yang, LIAN Peiqing, XUE Zhaojie, et al.Application status and prospect of big data and artificial intelligence in oil and gas field development[J].Journal of China University of Petroleum:Edition of Natural Science, 2020, 44(4):1-11. [15] MOHAN R, HUSSEIN A, MAWLOD A, et al.Data driven and ai methods to enhance collaborative well planning and drilling risk prediction[R].SPE 203073, 2020. [16] LIND Y B, KABIROVA A R.Artificial neural networks in drilling troubles prediction[R].SPE 171274, 2014. [17] KRISHNA S, RIDHA S, VASANT P, et al.Conventional and intelligent models for detection and prediction of fluid loss events during drilling operations:a comprehensive review[J].Journal of Petroleum Science and Engineering, 2020, 195:107818. [18] 徐同台, 刘玉杰.钻井工程防漏堵漏技术[M].北京:石油工业出版社, 1997. XU Tongtai, LIU Yujie.Leakage prevention and plugging technology in drilling engineering[M].Beijing:Petroleum Industry Press, 1997. [19] 张磊, 王晓鹏, 谢涛, 等.天然裂缝性地层漏失压力预测新模型[J].钻采工艺, 2018, 41(5):19-22. ZHANG Lei, WANG Xiaopeng, XIE Tao, et al.A New Leakage pressure prediction model for natural fractured formation[J].Drilling & Production Technology, 2018, 41(5):19-22. [20] MORITA N, BLACK A D, GUH G F.Theory of lost circulation pressure[R].SPE 20409, 1990. [21] 苏皓, 雷征东, 李俊超, 等.储集层多尺度裂缝高效数值模拟模型[J].石油学报, 2019, 40(5):587-593. SU Hao, LEI Zhengdong, LI Junchao, et al.An effective numerical simulation model of multi-scale fractures in reservoir[J].Acta Petrolei Sinica, 2019, 40(5):587-593. [22] 蒋裕强, 刘雄伟, 付永红, 等.渝西地区海相页岩储层孔隙有效性评价[J].石油学报, 2019, 40(10):1233-1243. JIANG Yuqiang, LIU Xiongwei, FU Yonghong, et al.Evaluation of effective porosity in marine shale reservoir, western Chongqing[J].Acta Petrolei Sinica, 2019, 40(10):1233-1243. [23] 杨午阳, 杨佳润, 陈双全, 等.基于U-Net深度学习网络的地震数据断层检测[J].石油地球物理勘探, 2021, 56(4):688-697. YANG Wuyang, YANG Jiarun, CHEN Shuangquan, et al.Seismic data fault detection based on U-Net deep learning network[J].Oil Geophysical Prospecting, 2021, 56(4):688-697. [24] 牟丹, 张丽春, 徐长玲.3种经典机器学习算法在火山岩测井岩性识别中的对比[J].吉林大学学报:地球科学版, 2021, 51(3):951-956. MOU Dan, ZHANG Lichun, XU Changling.Comparison of three classical machine learning algorithms for lithology identification of volcanic rocks using well logging data[J].Journal of Jilin University:Earth Science Edition, 2021, 51(3):951-956. [25] 谷宇峰, 张道勇, 鲍志东, 等.利用梯度提升决策树(GBDT) 预测渗透率——以姬塬油田西部长4+5段致密砂岩储层为例[J].地球物理学进展, 2021, 36(2):585-594. GU Yufeng, ZHANG Daoyong, BAO Zhidong, et al.Permeability prediction using Gradient Boosting Decision Tree (GBDT):a case study of tight sandstone reservoirs of member of Chang 4+5 in western Jiyuan oilfield[J].Progress in Geophysics, 2021, 36(2):585-594. [26] 陈桂, 刘洋.基于人工智能的断层自动识别研究进展[J].地球物理学进展, 2021, 36(1):119-131. CHEN Gui, LIU Yang.Research progress of automatic fault recognition based on artificial intelligence[J].Progress in Geophysics, 2021, 36(1):119-131. [27] 邹文波.人工智能研究现状及其在测井领域的应用[J].测井技术, 2020, 44(4):323-328. ZOU Wenbo.Artificial intelligence research status and applications in well logging[J].Well Logging Technology, 2020, 44(4):323-328. [28] GENG Zhi, WANG Hanqing, FAN Meng, et al.Predicting seismic-based risk of lost circulation using machine learning[J].Journal of Petroleum Science and Engineering, 2019, 176:679-688. [29] 王建君, 李井亮, 李林, 等.基于叠后地震数据的裂缝预测与建模——以太阳-大寨地区浅层页岩气储层为例[J].岩性油气藏, 2020, 32(5):122-132. WANG Jianjun, LI Jingliang, LI Lin, et al.Fracture prediction and modeling based on poststack 3D seismic data:a case study of shallow shale gas reservoir in Taiyang-Dazhai area[J].Lithologic Reservoirs, 2020, 32(5):122-132. [30] 卢志远, 张晓黎, 张万龙, 等.一种地震裂缝预测与岩石力学相结合评估井漏风险的新方法——以准噶尔盆地玛湖油田A井区为例[J].天然气地球科学, 2020, 31(10):1453-1465. LU Zhiyuan, ZHANG Xiaoli, ZHANG Wanlong, et al.A new method of leakage risk evaluation based on seismic fracture prediction and rock mechanics:case study in a wellblock of Mahu oilfield in Junggar Basin[J].Natural Gas Geoscience, 2020, 31(10):1453-1465. [31] 张吉昌, 邢玉忠, 郑丽辉.利用人工智能技术进行裂缝识别研究[J].测井技术, 2005, 29(1):52-54. ZHANG Jichang, XING Yuzhong, ZHENG Lihui.Using artificial intelligent technique to identify fractures[J].Well Logging Technology, 2005, 29(1):52-54. [32] 申辉林, 高松洋.基于BP神经网络进行裂缝识别研究[J].新疆石油天然气, 2006, 2(4):39-42. SHEN Huilin, GAO Songyang.Fractures identification based on BP neural network[J].Xinjiang Oil & Gas, 2006, 2(4):39-42. [33] JIANG Jiajun, XU Rui, JAMES S C, et al.Deep-learning-based vuggy facies identification from borehole images[J].SPE Reservoir Evaluation & Engineering, 2021, 24(1):250-261. [34] TRAN N L, GUPTA I, DEVEGOWDA D, et al.Application of interpretable machine-learning workflows to identify brittle, fracturable, and producible rock in horizontal wells using surface drilling data[J].SPE Reservoir Evaluation & Engineering, 2020, 23(4):1328-1342. [35] LI Zejun, CHEN Mian, JIN Yan, et al.Study on intelligent prediction for risk level of lost circulation while drilling based on machine learning[R].ARMA 2018-105, 2018. [36] 何涛, 谢显涛, 王君, 等.利用优化BP神经网络建立裂缝宽度预测模型[J].钻井液与完井液, 2021, 38(2):201-206. HE Tao, XIE Xiantao, WANG Jun, et al.Crack width prediction model based on optimized BP neural network[J].Drilling Fluid & Completion Fluid, 2021, 38(2):201-206. [37] FENG Yongcun, JONES J F, GRAY K E.A review on fracture-initiation and -propagation pressures for lost circulation and wellbore strengthening[J].SPE Drilling & Completion, 2016, 31(2):134-144. [38] YIN Qishuai, YANG Jin, LIU Shujie, et al.Intelligent method of identifying drilling risk in complex formations based on drilled wells data[R].SPE 187472, 2017. [39] AHMED S A, MAHMOUD A A, ELKATATNY S, et al.Prediction of pore and fracture pressures using support vector machine[R].IPTC 19523, 2019. [40] YU Hao, CHEN Guoxiong, GU Hanming.A machine learning methodology for multivariate pore-pressure prediction[J].Computers & Geosciences, 2020, 143:104548. [41] BOONCHAROEN P, RINSIRI T, PAIBOON P, et al.Pore pressure estimation by using machine learning model[R].IPTC 21490, 2021. [42] ALKINANI H H, AL-HAMEEDI A T, DUNN-NORMAN S, et al.Data-driven neural network model to predict equivalent circulation density ECD[R].SPE 198612, 2019. [43] HAN Chao, GUAN Zhichuan, LI Jingjiao, et al.Equivalent circulating density prediction using a hybrid arima and BP neural network model[R].SPE 197495, 2019. [44] ALKINANI H H, AL-HAMEEDI A T, DUNN-NORMAN S, et al.Prediction of lost circulation prior to drilling for induced fractures formations using artificial neural networks[R].SPE 195197, 2019. [45] ALKINANI H H, AL-HAMEEDI A T, DUNN-NORMAN S, et al.Minimizing lost circulation non-productive time for naturally fractured formations[R].ARMA 2019-0513, 2019. [46] JAHANBAKHSHI R, KESHAVARZI R, JALILI S.Artificial neural network-based prediction and geomechanical analysis of lost circulation in naturally fractured reservoirs:a case study[J].European Journal of Environmental and Civil Engineering, 2014, 18(3):320-335. [47] AL-HAMEEDI A T, ALKINANI H H, DUNN-NORMAN S, et al.Using machine learning to predict lost circulation in the Rumaila field, Iraq[R].SPE 191933, 2018. [48] HOU Xinxin, YANG Jin, YIN Qishuai, et al.Lost circulation prediction in south china sea using machine learning and big data technology[R].OTC 30653 2020. [49] 翟晓鹏, 鞠鹏飞, 谢志涛, 等.页岩诱导性裂缝漏失压力动力学模型[J].天然气工业, 2018, 38(3):81-86. ZHAI Xiaopeng, JU Pengfei, XIE Zhitao, et al.A dynamic model for the leakage pressure of induced fractures in shale reservoirs[J].Natural Gas Industry, 2018, 38(3):81-86. [50] 邸士莹, 程时清, 白文鹏, 等.致密油藏动态裂缝扩展机理及应用[J].力学学报, 2021, 53(8):2141-2155. DI Shiying, CHENG Shiqing, BAI Wenpeng, et al.Dynamic fracture propagation mechanism and application in tight oil reservoir[J].Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8):2141-2155. [51] 李大奇, 康毅力, 刘修善, 等.基于漏失机理的碳酸盐岩地层漏失压力模型[J].石油学报, 2011, 32(5):900-904. LI Daqi, KANG Yili, LIU Xiushan, et al.The lost circulation pressure of carbonate formations on the basis of leakage mechanisms[J].Acta Petrolei Sinica, 2011, 32(5):900-904. [52] 涂曦予, 于露, 耿子辰, 等.基于大规模时间序列的井漏事故预警方法[J].信息技术, 2018, 42(12):1-4. TU Xiyu, YU Lu, GENG Zichen, et al.Research on intelligent warning of loss circulation based on large-scale time series data[J].Information Technology, 2018, 42(12):1-4. [53] 谢平, 蒋丽雯, 赵尧, 等.基于神经网络的井涌井漏实时预测方法研究[J].现代计算机, 2018(11):23-28. XIE Ping, JIANG Liwen, ZHAO Yao, et al.Research on real-time prediction and analysis based on neural network for well kick and lost circulation[J].Modern Computer, 2018(11):23-28. [54] 史肖燕, 周英操, 赵莉萍, 等.基于随机森林的溢漏实时判断方法研究[J].钻采工艺, 2020, 43(1):9-12. SHI Xiaoyan, ZHOU Yingcao, ZHAO Liping, et al.Losses in real time on basis of random forest method[J].Drilling & Production Technology, 2020, 43(1):9-12. [55] UNRAU S, TORRIONE P.Adaptive real-time machine learning-based alarm system for influx and loss detection[R].SPE 187155, 2017. [56] ANDIA P, SANT R V, WHITELEY N.A comprehensive real-time data analysis tool for fluid gains and losses[R].SPE 189576, 2018. [57] 马涛, 张仲宏, 王铁成, 等.勘探开发梦想云平台架构设计与实现[J].中国石油勘探, 2020, 25(5):71-81. MA Tao, ZHANG Zhonghong, WANG Tiecheng, et al.Architecture design and implementation of E & P Dream Cloud platform[J].China Petroleum Exploration, 2020, 25(5):71-81. [58] 李剑峰.智慧石化建设:从信息化到智能化[J].石油科技论坛, 2020, 39(1):34-42. LI Jianfeng.Construction of intelligent petrochemical industry:from information to intelligence[J].Petroleum Science and Technology Forum, 2020, 39(1):34-42. [59] 张志磊, 胡百中, 卞维坤, 等.昭通页岩气示范区井漏防治技术与实践[J].钻井液与完井液, 2020, 37(1):38-45. ZHANG Zhilei, HU Baizhong, BIAN Weikun, et al.Mud loss control techniques and practices in Zhaotong demonstration zone of shale gas drilling[J].Drilling Fluid & Completion Fluid, 2020, 37(1):38-45. [60] 李宁, 张震, 程荣超, 等.库车山前堵漏材料关键性能参数及评价方法研究[J].内蒙古石油化工, 2020, 46(8):6-10. LI Ning, ZHANG Zhen, CHENG Rongchao, et al.Research on key performance parameters and evaluation methods of lost circulation materials in Kuqa piedmont[J].Inner Mongolia Petrochemical Industry, 2020, 46(8):6-10. [61] 王涛, 刘锋报, 罗威, 等.塔里木油田防漏堵漏技术进展与发展建议[J].石油钻探技术, 2021, 49(1):28-33. WANG Tao, LIU Fengbao, LUO Wei, et al.The technical advance and development suggestions for leakage prevention and plugging technologies in the Tarim oilfield[J].Petroleum Drilling Techniques, 2021, 49(1):28-33. [62] 张学洪, 李黔.基于案例推理的井漏风险预警方法[J].断块油气田, 2017, 24(2):255-258. ZHANG Xuehong, LI Qian.Risk pre-warning method of well leakage based on case reasoning[J].Fault-Block Oil and Gas Field, 2017, 24(2):255-258. [63] 尹虎, 王海彪.基于CBR的井漏复杂事故的智能预警方法研究[J].科技通报, 2018, 34(4):195-199. YIN Hu, WANG Haibiao.Intelligent research of complex loss circulation' warning based on CBR[J].Bulletin of Science and Technology, 2018, 34(4):195-199. [64] REEDY K, POPA A S, CASSIDY S D.Remediation solutions for lost circulation using case based reasoning[R].SPE 190066, 2018. [65] ALKINANI H H, AL-HAMEEDI A T T, DUNN-NORMAN S.Minimizing lost circulation non-productive time using expected monetary value and decision tree analysis[R].SPE 200844, 2021. [66] ABBAS A K, HAMED H M, AL-BAZZAZ W, et al.Predicting the amount of lost circulation while drilling using artificial neural networks:an example of southern Iraq oil fields[R].SPE 198617, 2019. [67] ABBAS A K, BASHIKH A A, ABBAS H, et al.Intelligent decisions to stop or mitigate lost circulation based on machine learning[J].Energy, 2019, 183:1104-1113. [68] IZYUROV V, KHARITONOV A, SEMENIKHIN I, et al.Selecting bridging agents' particle size distribution for optimum plugging while drilling in permeable zones[R].SPE 197009, 2019. [69] 蒋官澄, 毛蕴才, 周宝义, 等.暂堵型保护油气层钻井液技术研究进展与发展趋势[J].钻井液与完井液, 2018, 35(2):1-16. JIANG Guancheng, MAO Yuncai, ZHOU Baoyi, et al.Progress made and trend of development in studying on temporarily type plugging reservoir protection drilling fluids[J].Drilling Fluid & Completion Fluid, 2018, 35(2):1-16. [70] 张世锋, 王相, 崔新颖, 等.基于改进理想充填理论的堵漏颗粒粒度分布设计方法[J].常州大学学报:自然科学版, 2021, 33(3):54-59. ZHANG Shifeng, WANG Xiang, CUI Xinying, et al.Modified ideal packing theory to optimize size distribution of plugging particle for fracture lost circulation control[J].Journal of Changzhou University:Natural Science Edition, 2021, 33(3):54-59. [71] 康毅力, 王凯成, 许成元, 等.深井超深井钻井堵漏材料高温老化性能评价[J].石油学报, 2019, 40(2):215-223. KANG Yili, WANG Kaicheng, XU Chengyuan, et al.High-temperature aging property evaluation of lost circulation materials in deep and ultra-deep well drilling[J].Acta Petrolei Sinica, 2019, 40(2):215-223. [72] 暴丹, 邱正松, 邱维清, 等.高温地层钻井堵漏材料特性实验[J].石油学报, 2019, 40(7):846-857. BAO Dan, QIU Zhengsong, QIU Weiqing, et al.Experiment on properties of lost circulation materials in high temperature formation[J].Acta Petrolei Sinica, 2019, 40(7):846-857. [73] 熊战, 李立昌, 王学龙, 等.理想充填堵漏工艺在温储6井的应用[J].钻井液与完井液, 2020, 37(4):465-468. XIONG Zhan, LI Lichang, WANG Xuelong, et al.Lost circulation control with idea packing on well Wenchu-6[J].Drilling Fluid & Completion Fluid, 2020, 37(4):465-468. [74] 贾承造.中国石油工业上游发展面临的挑战与未来科技攻关方向[J].石油学报, 2020, 41(12):1445-1464. JIA Chengzao.Development challenges and future scientific and technological researches in China's petroleum industry upstream[J].Acta Petrolei Sinica, 2020, 41(12):1445-1464. |
[1] | Yan Xiaopeng, Xu Chengyuan, Kang Yili, Shang Xiangyu, Jing Haoran, Lin Chong, Zhang Jingyi. Mechanical mechanism of meso-structure instability of fracture plugging zone based on the characterization of force chain network [J]. Acta Petrolei Sinica, 2021, 42(6): 765-775. |
[2] | Li Ning, Xu Binsen, Wu Hongliang, Feng Zhou, Li Yusheng, Wang Kewen, Liu Peng. Application status and prospects of artificial intelligence in well logging and formation evaluation [J]. Acta Petrolei Sinica, 2021, 42(4): 508-522. |
[3] | Sun Jinsheng, Lei Shaofei, Bai Yingrui, Lü Kaihe, Zhang Shupei, Han Jinliang, Cheng Rongchao, Liu Fan. Mechanical transformation mechanism of polymer materials and its application prospects in the field of drilling fluids [J]. Acta Petrolei Sinica, 2021, 42(10): 1382-1394. |
[4] | Sun Jinsheng, Zhao Zhen, Bai Yingrui, Lü Kaihe, Wang Jintang, Wang Ren, Wang Chenye, Dai Liyao. Progress in research of intelligent self-healing gel and its application prospects in the field of drilling fluid [J]. Acta Petrolei Sinica, 2020, 41(12): 1706-1718. |
[5] | Bao Dan, Qiu Zhengsong, Ye Lian, Zhong Hanyi, Zhao Xin, Qiu Weiqing, Wang Baotian, Guo Baoyu. Preparation and characteristic experiments of intelligent lost circulation materials based on thermally shape memory polymer [J]. Acta Petrolei Sinica, 2020, 41(1): 106-115. |
[6] | Bao Dan, Qiu Zhengsong, Qiu Weiqing, Wang Baotian, Guo Baoyu, Wang Xudong, Liu Junyi, Chen Jiaxu. Experiment on properties of lost circulation materials in high temperature formation [J]. Acta Petrolei Sinica, 2019, 40(7): 846-857. |
[7] | Kang Yili, Wang Kaicheng, Xu Chengyuan, You Lijun, Wang Limin, Li Ning, Li Jiaxue. High-temperature aging property evaluation of lost circulation materials in deep and ultra-deep well drilling [J]. Acta Petrolei Sinica, 2019, 40(2): 215-223. |
[8] | Zhang Kangwei, Li Binfei, Yuan Long, Li Songyan, Liu Gang, Luo Zhimin. Nitrogen foam continuous sand flushing technique in low-pressure wells with lost circulations [J]. Acta Petrolei Sinica, 2016, 37(S2): 122-130. |
[9] | Qiu Zhengsong, Liu Junyi, Zhou Baoyi, Bao Dan, Dou Tongwei, Xiao Chengcai. Tight fracture-plugging mechanism and optimized design for plugging drilling fluid [J]. Acta Petrolei Sinica, 2016, 37(S2): 137-143. |
[10] | LÜ Kaihe, QIU Zhengsong, WEI Huiming, LI Xianfeng, SONG Yuansen. Study on techniques of auto-adapting lost circulation resistance and control for drilling fluid [J]. Editorial office of ACTA PETROLEI SINICA, 2008, 29(5): 757-760,765. |
[11] | Wang Zaiming, Qiu Zhengsong, Xu Jiafang, Huang Wei'an. Balance area of compound lost circulation control and its application in novel lost circulation simulator [J]. Editorial office of ACTA PETROLEI SINICA, 2007, 28(1): 143-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 100724
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn